Gene discovery holds key to growing crops in cold climates

Researchers have shown for the first time that a gene – known as Spatula – limits the growth of plants in cool temperatures, possibly helping them adjust to cool conditions.

Researchers at the University of Edinburgh, who took part in the study, believe that by manipulating the gene, they could produce the opposite effect – enabling development of crops that grow well in cold climates.

Scientists studied the Spatula gene in a weed known as thale cress and found that when levels of the gene were low, the plant leaves grew almost twice as much at lower temperatures as they would normally.

Being able to improve crop growth under cool conditions – in which growth would typically be slow – could help ensure the availability of food supplies for future populations.

The study, carried out by the Universities of Edinburgh and York, funded by the Biotechnology and Biological Sciences Research Council, the Garfield Weston Foundation and the Royal Society, was published in Current Biology.

Dr Karen Halliday of the University of Edinburgh's School of Biological Sciences, who took part in the study, said: “We have pinpointed a key gene linked to the growth of plants according to the temperature – this could be of real interest in improving crop yields and food security in temperate climates.”

Media Contact

Catriona Kelly EurekAlert!

More Information:

http://www.ed.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors