Dinosaurs lighter than previously thought

University of Manchester biologists used lasers to measure the minimum amount of skin required to wrap around the skeletons of modern-day mammals, including reindeer, polar bears, giraffes and elephants.

They discovered that the animals had almost exactly 21% more body mass than the minimum skeletal 'skin and bone' wrap volume, and applied this to a giant Brachiosaur skeleton in Berlin's Museum für Naturkunde.

Previous estimates of this Brachiosaur's weight have varied, with estimates as high as 80 tonnes, but the Manchester team's calculations – published in the journal Biology Letters – reduced that figure to just 23 tonnes. The team says the new technique will apply to all dinosaur weight measurements.

Lead author Dr Bill Sellers said: “One of the most important things palaeobiologists need to know about fossilised animals is how much they weighed. This is surprisingly difficult, so we have been testing a new approach. We laser scanned various large mammal skeletons, including polar bear, giraffe and elephant, and calculated the minimum wrapping volume of the main skeletal sections.

“We showed that the actual volume is reliably 21% more than this value, so we then laser scanned the Berlin Brachiosaur, Giraffatitan brancai, calculating the skin and bone wrapping volume and added 21%. We found that the giant herbivore weighed 23 tonnes, supporting the view that these animals were much lighter than traditionally thought.

Dr Sellers, based in Manchester's Faculty of Life Sciences, explained that body mass was a critical parameter used to constrain biomechanical and physiological traits of organisms.

He said: “Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates but they are often accused of excessive subjective input when estimating the thickness of missing soft tissue.

“Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is therefore more objective and far quicker.

“We tested this method on 14 large-bodied mammalian skeletons and demonstrated that it consistently underestimated body mass by 21%. We suggest that this is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs, Giraffatitan brancai, as 23,200 kg.

“The value we got for Giraffatitan is at the low range of previous estimates; although it is still huge, some of the enormous estimates of the past – 80 tonnes in 1962 – are exaggerated. Our method provides a much more accurate measure and shows dinosaurs, while still huge, are not as big as previously thought.”

Notes for editors: A copy of the paper is available on request. Images also available on request.

Media Contact

Aeron Haworth EurekAlert!

More Information:

http://www.manchester.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors