Cleveland Clinic researchers discover molecule that may prevent atherosclerosis

Cleveland Clinic researchers have discovered that a naturally occurring molecule may play a role in preventing plaque buildup inside arteries, possibly leading to new plaque-fighting drugs and improved screening of patients at risk of developing atherosclerosis.

Sometimes called hardening or clogging of the arteries, atherosclerosis is the buildup of cholesterol, fatty cells, and inflammatory deposits on the inner walls of the arteries, restricting blood flow to the heart. The disease can affect the arteries in the heart, legs, brain, kidneys, and other organs, and is the most common cause heart attacks, strokes, and peripheral vascular disease.

At the cellular level, plaque buildup is the result of macrophages in the vessel wall absorbing, processing, and storing cholesterol (lipids) and then accumulating in large amounts, eventually leading to the development of arterial lesions. The researchers, led by Eugene Podrez, M.D., Ph.D., of the Department of Molecular Cardiology at Cleveland Clinic's Lerner Research Institute, have discovered that the naturally occurring molecule Akt3 regulates lipid entry into macrophages and prevents the cells from storing excessive amounts of cholesterol and collecting in the artery.

Podrez says the discovery could lead to new drugs designed to prevent atherosclerosis. It could also help doctors develop screening tests to determine patient risk level for developing the disease.

Podrez and his colleagues are now looking into the particular mechanisms behind Akt3's role in regulating lipid processing and will attempt to replicate their results in humans.

Their study, “Akt3 Deficiency in Macrophages Promotes Foam Cell Formation and Atherosclerosis in Mice,” was published in the June 6 issue of Cell Metabolism.

Media Contact

Wyatt DuBois EurekAlert!

More Information:

http://www.ccf.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors