Breakthrough in regulating fat metabolism – Body’s fat switch discovered

This research, led by Professor Victor Zammit, Head of Metabolic and Vascular Health at Warwick Medical School, found that the enzyme known as ‘Carnitine palmitoyltransferase 1A’ (CPT1) has a switch which is thrown depending on the composition and curvature of its cellular membrane. This is the first time such a mechanism has been described and may possibly be unique, reflecting the importance of this protein to cellular function.

CPT1 is the key protein that regulates fatty acid oxidation in the liver and is critical for metabolism. Its activity determines whether individuals suffer from fatty liver in one extreme or ketosis in the other.

Professor Zammit explained: “Knowing that the CPT1 enzyme can switch and what controls it will ultimately lead to a better understanding of why some people appear to have a speedy metabolism and others struggle to curb their appetite.

“We are making great inroads to understanding the science behind our metabolism and how at cellular level it changes according to the influence of different factors – be they nutritional or hormonal.”

The importance of this work on clinical practice is that, having discovered the molecular mechanism, it should now be possible to design drugs that flick the switch of CPT1 in one way or the other, depending on the requirements of individual patients and the tissue that needs to be affected. For example, drugs can be developed for patients suffering from diabetic keto acidosis, a condition when insufficient insulin caused the body to start breaking down fat, so that the enzyme is inhibited to oxidize fewer fatty acids.

“This would be a major breakthrough in tackling the obesity crisis we now face,” added Professor Zammit.

The research, conducted in association with the University of Southern California, Los Angeles, USA has been published in Journal of Biological Chemistry as ‘Paper of the Week’ and the editors considered it to be within the top one percent in terms of significance both to fundamental science and potential clinical importance.

Link to paper: http://www.jbc.org/content/current ref: J. Biol. Chem. 2011 286: e99981. doi:10.1074/jbc.P111.306951

For further information or to arrange interviews, contact Kate Cox, Communications Manager on +44 (0)2476 574255/150483, m: +44(0)7920 531221 or kate.cox@warwick.ac.uk

Media Contact

Kate Cox EurekAlert!

Weitere Informationen:

http://www.warwick.ac.uk

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Grow faster, die sooner: How growth rates influence the fitness of bacteria

“The fitness of bacteria is more complex than expected,” explains Ulrich Gerland, professor for the theory of complex biosystems at the Technical University of…

Spintronics: Researchers show how to make non-magnetic materials magnetic

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from…

Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process

Within the Framework of a research project on the chemical imaging analysis of plastic digestion in caterpillars (RauPE), a team from Fraunhofer LBF used…