Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable Technology: Smart printed sensors monitor movement sequences

21.04.2016

Wearable technology has caught on to progress health and fitness. Simply worn on the body, smart garments can, for instance, track activity. Sensors in functional clothing could also help optimize exercises by monitoring movement sequences. A novel transparent sensor material developed by Fraunhofer ISC enables movement measuring sensors to be printed onto textiles. The innovative material will be presented on IDTechEX Europe at booth F16 in the Estrel Berlin on 27 and 28 April 2016.

Accessories like smart bracelets or smart watches are trending as »personal health coaches«, prompting the bearer to provide for sufficient sleep and activity or a healthy diet. Sensor-embedded textile solutions are a far more challenging and also more expensive approach. Often, function will override appearance. The new materials developed by Fraunhofer ISC might offer a cost-efficient alternative with the extra benefit of more adjustable appearance options.


Image 1 and 2 show contrast between the transparent and non-transparent printed sensors.

Source: K. Selsam-Geißler, Fraunhofer ISC


Source: K. Selsam-Geißler, Fraunhofer ISC

In cooperation with Fraunhofer ISIT and with support of the project partners from the industry, the new sensor technology will be incorporated into a prototype shirt. This so-called MONI shirt will feature a number of functions but is foremost designed to monitor movement sequences.

In an initial step, Fraunhofer ISC has developed novel piezoelectric polymer sensor printing pastes free from toxic solvents while Fraunhofer ISIT has provided the evaluation electronics. The next development steps are planned in close dialogue with the industry partners. They will include field tests on several types of textiles and applications, the further optimization of the electronics as well as wear and washability tests.

The sensor materials coming to use are flexible, transparent and suitable for various applications also beside of smart textiles: They register pressure and deformation and can thus serve as touch or motion sensors. Their sensitivity to temperature deviations further enables monitoring of temperature changes or non-contact interaction, e. g. as proximity sensors.

A simple screen printing process is all it takes to apply the sensor pastes onto textile fabrics or plastic films. Manufacturing encompasses two steps: First, the pattern is printed. Then, the sensors are subjected to an electric field making the piezolectric polymers align to adopt the targeted pressure sensitivity. The cost-efficient screen printing process is a definite plus when it comes to industrial use. It is the key to mass production of printed sensors on textiles.

Thanks to its transparency and flexibility, the new sensor material offers freedom of design in color and form for textiles and garments. As the sensors are much thinner than a human hair and applicable in whatever form, the wearer will hardly notice them embedded in a garment. There’s yet another benefit: the sensors do not require any power source like a battery. Instead, they harvest energy.

Smart textiles like this could be employed in health care or assisted living. In eldercare, everyday life movement sequences could be monitored and failure noticed. Additionally, it would be possible to monitor body signals of in-patients, such as temperature or breathing. This could be especially beneficial for bedridden patients or babies. Some day, even heart rate surveillance may be possible. Last but not least, functional sensor clothing could achieve cost reductions in the health care system. On top of assuming patient monitoring functions it could add to preventive health care.

In Addition to printed sensors on textiles Fraunhofer ISC shows textilintegrated pressure sensors made of silicone e. g. to measure pressure in shoes.

Weitere Informationen:

http://www.isc.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: Fraunhofer-Institut ISC Technology health care printing process sequences textiles

More articles from Trade Fair News:

nachricht Start to the year for medical exhibitions: international high-tech companies meet at MD&M West
17.01.2019 | IVAM Fachverband für Mikrotechnik

nachricht Innovative Infrared heat reduces energy consumption in coating packaging for food
12.12.2018 | Heraeus Noblelight GmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>