Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-destructive tomographic measuring method for geometrically complex microoptics

12.06.2019

For the functionality of optical systems, the geometrical shape of the functional optical surfaces and their position relative to each other is a decisive criterium. However, small-aperture polymer optics, which are in great demand, for example, in mobile phone cameras, endoscopes or car sensors, cannot yet be checked with sufficient accuracy using standard metrological methods. At the LASER - World of Photonics trade fair from 24 to 27 June 2019 in Munich, the Fraunhofer Institute for Production Technology IPT from Aachen, Germany, will present a new tomographic method that can measure such optical components with a small aperture non-destructively and in one step.

The new method is based on optical coherence tomography (OCT) and can capture both functional surfaces of an optical system simultaneously in one single scan.


OCT scanning head with lens tray for shape and centering measurement of injection molded micro lenses

Photo: Fraunhofer IPT

In this way not only the surfaces can be characterized, but also the alignment of the functional surfaces to each other can be checked. The process is also capable of characterizing spherical and aspherical lenses as well as free-form surfaces.

During the exhibition, the Fraunhofer IPT will be presenting its OCT-based inspection system for geometrically complex polymer microoptics at its booth in hall B1, booth 653.

The new measurement system offers manufacturers of sensor technology and imaging systems an efficient and cost-effective way of quality assurance:

Since the system can determine the shape and centering of both functional surfaces in just one single step, it delivers a result in shortest time that cannot until now be achieved so quickly and accurately with any conventional optical measurement method.

The Fraunhofer IPT is now planning to fully automate the tomographic process so that in-line integration into existing optical production lines will become possible.

Wissenschaftliche Ansprechpartner:

Max Riediger M.Sc.

Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
www.ipt.fraunhofer.de
max.riediger@ipt.fraunhofer.de

Weitere Informationen:

https://www.ipt.fraunhofer.de/en/Press/Pressreleases/20190612-non-destructive-to... Here you will find this press release and printable photos.

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Trade Fair News:

nachricht Modular OLED light strips
17.09.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Deburring EXPO: Finishing sheet edges and functional surfaces with the laser
12.09.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>