Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hannover Messe: New hybrid inks for printed, flexible electronics without sintering

10.04.2017

Research scientists at INM – Leibniz Institute for New Materials have now developed a new type of hybrid inks which allows electronic circuits to be applied to paper directly from a pen, for example.

Flexible circuits can be produced inexpensively on foil or paper using printing processes and permit futuristic designs with curved diodes or input elements. This requires printable electronic materials that retain a high level of conductivity during usage in spite of their curved surfaces.


New type of hybrid inks allow electronic circuits to be applied to paper directly from a pen.

Sourec: INM, free within this press release

Research scientists at INM – Leibniz Institute for New Materials have now developed a new type of hybrid inks which allows electronic circuits to be applied to paper directly from a pen, for example. They are usable after drying without any further processing.

The developers will be demonstrating their results and the possibilities they offer at stand B46 in hall 2 at this year's Hannover Messe which takes place from April 24 to April 28.

To create their hybrid inks, the scientists combined the benefits of polymers and metallic nanoparticles: gold or silver nanoparticles are coated with organic, conductive polymers and are then suspended in mixtures of water and alcohol.

“Metal nanoparticles with ligands are already today printed to form electronics circuits,” explains the materials scientist Kraus, adding that the shells mostly had to be removed by a sintering process. While the shells control the arrangement of the nanoparticles, they impede conductivity.

He added that this was difficult in the case of carrier materials that are sensitive to temperature such as paper or polymer films since these would be damaged during the sintering process. Kraus summarizes the results of his research, saying, “Our new hybrid inks are conductive in the as-dried state, are mechanically flexible, and do not require sintering”.

In their hybrid inks, the organic compounds have three functions: “The compounds serve as ligands, ensuring that the nanoparticles remain suspended in the liquid mixture; any agglomeration of particles would have a negative effect on the printing process. Simultaneously, the organic ligands ensure that the nanoparticles have a good arrangement when drying.

Ultimately, the organic compounds act as ´hinges´: if the material is bent, they maintain the electrical conductivity. In a layer of metal particles without the polymer sheath, the electrical conductivity would be quickly lost on bending,” Kraus continues.

Due to the combination of both materials, when bent, the electrical conductivity is greater than in a layer that is made purely of conductive polymer or a layer made purely of metal nanoparticles.

Your expert at INM
Prof. Dr. Tobias Kraus
INM – Leibniz-Institute for New Materials
Head Structure Formation
Deputy Head Innovation Center INM
Phone: +49 681-9300-389
tobias.kraus@leibniz-inm.de

INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. INM conducts research and development to create new materials – for today, tomorrow and beyond. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces. INM is an institute of the Leibniz Association and has about 240 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | INM - Leibniz-Institut für Neue Materialien gGmbH

More articles from Trade Fair News:

nachricht Medica 2018: Mobile motion feedback to help patients reduce relieving postures when walking
07.11.2018 | Technische Universität Kaiserslautern

nachricht Medica 2018: Control with your feet - computer game to help prevent thrombosis
05.11.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>