Direct Programmable Detection of Epigenetic Cytosine Modifications in DNA using TALEs

Epigenetic modifications at the 5-position of cytosine in DNA provide important clues for diseases such as neurological disorders and a range of cancers. Scientists at the University of Constance have now developed a method which allows the direct detection, i.e. without prior chemical modification of the DNA sample, of the epigenetic modification status in the 5-position of cytosine (such as 5mC and 5hmC) in any user-defined sequence. It is a simple and reliable method with high resolution and can be combined with a multitude of detection methods. Detection both in vivo and in vitro is possible.

Further information: PDF

Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40

Contact
Dipl.-Biol. Marcus Lehnen, MBA

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors