Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering Customers’ Hidden Needs

15.07.2015

Siemens Corporate Technology’s Beijing-based Industrial Design Thinking Center (i.DT) is opening the door to identifying users’ hidden needs while generating ideas for innovative products.

Is it possible to communicate and visualize a concept for an innovative computer tomograph with Lego blocks, or to design a rescue device for mine workers with sheets of colored paper?


Many innovations are born in i.DT’s Prototyping Lab.

At the Industrial Design Thinking Center at Siemens Corporate Technology (CT) in Beijing, unusual artifacts such as these are an essential part of a serious product development process. Working with scissors and toys opens up new perspectives and helps Siemens engineers communicate their ideas, and benefit from rapid iterations of testing in the early development stage.

Industrial Design Thinking is the method that has been used by Siemens CT in China since the beginning of 2012 for project topics burdened with so-called “wicked problems”— particularly complex social or cultural challenges. This creative process uses visual and tactile impressions more than other methods do.

“This is greatly appreciated by our Chinese colleagues and users,” says Dr. Bettina Maisch, who built up the i.DT facility and program in the Chinese capital. One strength of Design Thinking is that it helps to identify needs that the user isn’t even conscious of and is not able to articulate.

To identify these “hidden needs,” as Bettina Maisch calls them, participants of role-playing games take on the perspectives of different types of users. The ideas are developed in several fast recursive loops using arts and crafts materials. With every iteration, the ideas become a little more precise.

The process, which can last for several months and include a number of workshops, starts from the definition of the innovation target and ends with a sales pitch that includes what the initial challenge from the user perspective was, how the solution works on the basis of a prototype and what kind of value it delivers to customers.

An Approach that Germinated in Palo Alto

The CT researchers’ role models were the founders of Design Thinking: three IT experts from the U.S., including David Kelley, the founder of innovation company IDEO and now also a professor at Stanford University in Palo Alto. In the early 1990s the three were looking for a method that would include users’ wishes in a very early phase of the innovation process. In 2005 Hasso Plattner, the co-founder of SAP, made a personal donation of 35 million dollars to fund the Hasso Plattner Institute of Design at Stanford. Its goals are to train students with a view to preparing a generation of innovators to tackle complex challenges, foster creative confidence, and push students beyond the boundaries of traditional academic disciplines.

Design-oriented development works very well in academic settings and has also been successfully applied to consumer goods. However, Siemens’ business is in capital goods that generate electricity or enhance the productivity of production plants. Maisch and her team have therefore adapted the IDEO and Stanford to requirements to Siemens’ needs, its people and target markets.

What Do They Really Want? 

“In our approach, by going in the field, observing and talking to the user, we are designing to demonstrate that through deep understanding new opportunity areas can be identified for solutions that provide value to our customers and Siemens,” says Li Zhi Hao, who has led i.DT activities in China since 2015. In order to identify these needs, innovation teams from Corporate Technology and an associated business unit shadow users in their working environments. For example, in Wuhan, China, a project initially called for improvement of an existing intelligent traffic management solution. A team went out in the field and observed and talked to various stakeholders, including pedestrians, taxi drivers and policemen. They provided the policemen with a mobile application that allows them to take over control of traffic lights. “In many projects, our use of Industrial Design Thinking revealed that users actually had very different needs than the business unit had originally thought,” says Li Zhi Hao.

A new device for analyzing urine samples provides another example. Normally, test strips are placed in a device and subjected to chemical analysis. Siemens has an 80 percent share of the world market in this area, but only two percent of the Chinese market, supposedly because potential customers think the price of devices is too high. Siemens Healthcare therefore stipulated that the new device should cost only €50, which would be in line with the prices of competing Chinese products.

However, through field research the team uncovered another business opportunity for urine analyzers. Through interviews with kidney specialists and lab managers they discovered that technicians in central labs in China have to review 70 percent of the results from commercial fully-automated urine sediment analyzers because of the current low accuracy of the analyzers.

In close collaboration with Siemens’ Diagnostics Business Unit they decided to develop a product that would exploit this gap: a microscope into which the urine sample is placed manually that identifies solid materials in the sample through automatic image processing that is faster than an evaluation with the naked eye. This example demonstrates that first hand data from the field and openness to new but promising opportunities can be a valuable direction for new product development at Siemens.

Chinese Thinking

Why has Beijing established itself as the nucleus of Design Thinking at Siemens? “The broad range of user needs in China is an important innovation driver,” explains Dr. Arding Hsu, who was the head of CT China until 2014 and introduced the method three years ago. In addition, Chinese like to think and work in playful and visual ways, tinker with models, and improve them step by step. All of these qualities are very much in tune with Design Thinking.

Now that the method has proved successful in China, Siemens wants to use it to help colleagues in other countries develop more innovative products. Bettina Maisch has been working at Corporate Technology in Munich since the beginning of 2015. There and in Erlangen-Nuremberg, she is building a team for Industrial Design Thinking that will support the business units in Germany. Meanwhile, in Beijing her colleague Li Zhi Hao expects to have the i.DT lab significantly expanded by mid 2015.

It will then have a larger workshop room, several dedicated project rooms, and an advanced machine shop with 3D printer, and a computer numerical control laser cutter, which will take the low resolution prototypes to the next professional level. “Industrial Design Thinking is an important building block in terms of getting us closer to customer,” says Maisch. She’s convinced that this approach will benefit Siemens’ innovation culture. Bernd Müller

Bernd Müller | Siemens - Pictures of the Future

Further reports about: CT Design Design Thinking Industrial Design Siemens Technology product development

More articles from Science Education:

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>