Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL’s nanobiosensor technology gives new access to living cell’s molecular processes

28.04.2004


Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a nanoscale technology for investigating biomolecular processes in single living cells. The new technology enables researchers to monitor and study cellular signaling networks, including the first observation of programmed cell death in a single live cell.


This image shows a nanoprobe, with a tip 1,000 times finer than a human hair, penetrating a cell. The probe can enter, perform a measurement in situ and be withdrawn without destroying the cell. The nanobiosensor technology provides researchers who study cell systems at the molecular level a valuable tool for monitoring the health of a single cell.



The "nanobiosensor" allows scientists to physically probe inside a living cell without destroying it. As scientists adopt a systems approach to studying biomolecular processes, the nanobiosensor provides a valuable tool for intracellular studies that have applications ranging from medicine to national security to energy production.

ORNL Corporate Fellow and Life Sciences Division researcher Tuan Vo-Dinh leads a team of researchers who are developing the nanoscale technology. "This research illustrates the integrated ‘nano-bio-info’ approach to investigating and understanding these complex cell systems," Vo-Dinh said. "There is a need to explore uncharted territory inside a live cell and analyze the molecular processes. This minimally invasive nanotechnology opens the door to explore the inner world of single cells".


ORNL’s work was most recently published in the Journal of the American Chemical Society and has appeared in a feature article of the journal Nature. Members of Vo-Dinh’s research team include postdoctoral researchers Paul M. Kasili, Joon Myong Song and research staff biochemist Guy Griffin.

The group’s nanobiosensor is a tiny fiber-optic probe that has been drawn to a tip of only 40 nanometers (nm) across—a billionth of a meter and 1,000 times smaller than a human hair. The probe is small enough to be inserted into a cell.

Immobilized at the nanotip is a bioreceptor molecule, such as an antibody, DNA or enzyme that can bind to target molecules of interest inside the cell. Video microscopy experiments reveal the minimally invasive nature of the nanoprobe in that it can be inserted into a cell and withdrawn without destroying it.

Because the 40-nm diameter of the fiber-optic probe is much narrower than the 400-nm wavelength of light, only target molecules bound to the bioreceptors at the tip are exposed to and excited by the evanescent field of a laser signal.

"We detect only the molecules that we target, without all the other background ‘noise’ from the myriad other species inside the cell. Only nanoscale fiber-optics technology can provide this capability," said Vo-Dinh.

ORNL’s technology gives molecular biologists an important systems biology approach of studying complex systems through the nano-bio-info route. Conventional analytical methods—electron microscopy or introducing dyes, for example—have the disadvantage of being lethal to the cell.

"The information obtained from conventional measurements is an average of thousands or millions of cells," said Vo-Dinh. "When you destroy cells to study them, you can’t obtain the dynamic information from the whole live cell system. You get only pieces of information. Nanosensor technology provides a means to preserve a cell and study it over time within the entire cell system."

The ability to work with living cells opens a new path to obtaining basic information critical to understanding the cell’s molecular processes. Researchers have a new tool for understanding how toxic agents are transported into cells and how biological pathogens trigger biological responses in the cell.

Vo-Dinh’s team recently detected the biochemical components of a cell-signaling pathway, apoptosis. Apoptosis is a key process in an organism’s ability to prevent disease such as cancer. This programmed cell-death mechanism causes cells to self-destruct before they can multiply and introduce disease to the organism.

"When a cell in our body receives insults such as toxins or inflammation and is damaged, it kills itself. This is nature’s way to limit and stop propagation of many diseases such as cancer," said Vo-Dinh. "For the first time we’ve seen apoptosis occur within a single living cell."

Apoptosis triggers a host of tell-tale enzyme called caspases. Vo-Dinh’s team introduced a light-activated anti-cancer drug into cancer cells. They then inserted the fiberoptic nanoprobe with a biomarker specific for caspase-9 attached to its tip. The presence of caspase-9 caused cleavage of the biomarker from the tip of the nanobiosensor. Changes in the intensity of the biomarker’s fluorescence revealed that the light-activated anti-cancer drug had triggered the cell-death machinery.

"The nanobiosensor has many other applications for looking at how cells react when they are treated with a drug or invaded by a biological pathogen. This has important implications ranging from drug therapy development to national security, environmental protection and a better understanding of molecular biology at a systems level," said Vo-Dinh. "This area of research is truly at the nexus of nanotechnology, biology and information technology."

The research was supported by ORNL’s laboratory-directed research and development program and by the DOE Office of Biological and Environmental Research in the Office of Science. ORNL is managed by UT-Battelle for the Department of Energy.

Bill Cabage | ORNL
Further information:
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20040427-00

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>