Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping microfluidics’ impact on life sciences

03.03.2004


Over the last decade, microfluidics has enabled the rapid growth and commercialisation of the life sciences, and IST-project FLOWMAP aims to further these advances by elaborating a roadmap that identifies technological gaps and streamlines RTD activities in the field.



One of the most dynamically emerging disciplines of microtechnology, microfluidic devices can accurately control minute volumes of fluid - mostly liquids - well below the microlitre range.

Modern inkjet technology with global turnover topping 10 billion euros represents an impressive example of how microfluidics has leveraged a mature and commercially successful area of business. By significantly reducing reagent volumes and thus the costs per test, microfluidics-based liquid handling equipment has emerged from inkjet technology to enable modern high-throughput technologies for pharmaceutical drug discovery.


The FLOWMAP consortium identified a broad gap between the technological capabilities on the one side and the know-how available on the developers’ back-end side, and the awareness, needs and expectations among potential customers acting on the front end. Bringing together more than 150 key players from different disciplines on a European level, FLOWMAP plotted a technology roadmap for the advances expected in microfluidics and defined future requirements of the customers through interviews, questionnaires and workshops.

"We have quantified the economic development and pinpointed important market drivers. Furthermore, the paramount technology drivers which will determine the present and expected capabilities have been identified. This way, the roadmap provides a solid basis for decision makers planning investments in the life science arena," says project manager Jens Ducree.

He adds the roadmap has now been produced from the results of these surveys and "we are shipping an electronic 197-page record to customers." He points out that an executive summary of the roadmap is currently available on their website.

The summary notes the technological advantages arising from microfluidic qualities, such as fast response times, well-controlled reaction conditions, small power consumption, low dead volumes and the possibility to manipulate liquids by means of electric fields, heating or ultrasonic waves. These qualities allow for compact, often stand-alone systems that have been designed featuring full process integration and automation to carry out complex tasks in a hands-on fashion.

These portable or point-of-use systems leverage applications such as so-called ’labs-on-a-chip’ for medical diagnostics or other analytical purposes like ecological monitoring. The summary points out other promising markets comprise miniaturised therapeutical devices, e.g. for implantable, stand-alone drug delivery units. As a benefit to research and development, microfluidics also provides a unique access to the nanoworld of biomolecular chemistry, thus setting the pace for many leading edge biotechnological innovations.

Major hurdles presently impeding the commercial proliferation of microfluidic technologies identified by the roadmap include the cost of associated equipment and microfluidic components, the strength of competing/substitutive technologies, and the lack of commercial suppliers, infrastructure and industrial standards.

Based on survey consensus, the roadmap forecasts an overall annual growth rate for microfluidic technologies in the life sciences of more than 30 per cent per annum with drug discovery, medical diagnostics and therapeutic devices representing the most promising fields. Using the market analysis, consortium partner Yole Développement estimates the current global market of microfluidics in the life sciences at approximately 500 million euros, increasing at an annual growth rate of 19 per cent to 1.4 billion euros in 2008. Ducree adds that the roadmap provides a detailed breakdown of this turnover in each microfluidics segment identified in life sciences, which can be ordered from the website.

Contact:
Jens Ducree
Albert-Ludwigs-Universitaet Freiburg
IMTEK
Chair for Mems Applications
Fahnenbergplatz
D-79085 Freiburg
Germany
Tel: +49-761-2037324
Fax: +49-761-2037322
Email: ducree@imtek.de

Source: Based on information from FLOWMAP

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62763
http://www.microfluidics-roadmap.com/

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019 | Ecology, The Environment and Conservation

Outback telescope captures Milky Way center, discovers remnants of dead stars

20.11.2019 | Physics and Astronomy

The ever-changing brain: Shining a light on synaptic plasticity

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>