Climate Change Could Release Large Amounts of Carbon

Locked in Arctic Soils Into the Ocean, Researchers Say

The Arctic Ocean receives about ten percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils. Scientists had not known the age of the carbon that reaches the ocean: was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

Now, using carbon-14 data, scientists from the United States and Germany have been able to determine the approximate age of dissolved organic carbon in the Arctic for the first time. They report, in an article to be published this month in Geophysical Research Letters, that most of the carbon that reaches the ocean is relatively young at present, but that this could change. Warming of the Arctic, which has been documented in recent years, could affect northern peats, collectively one of the largest reservoirs of organic carbon on Earth. As the carbon-rich soils warm, the carbon is more susceptible to being transported to the ocean by rivers small and large, they say.

The researchers, headed by Ronald Benner of the University of South Carolina, studied four rivers in northern Russia and in Alaska, along with the Arctic Ocean itself. The carbon-14 dating method is not precise, because, for example, old and new dissolved organic carbon is typically mixed in a given sample, resulting in an average reading, and content of rivers varies by season as well. The scientists concentrated their study in periods of peak river discharge.

“Our results are not applicable to the sedimentary fraction of river discharge,” Benner notes. “However, most of the organic carbon exported from land to the ocean is in dissolved form, and it is the dissolved components that track river water in the ocean.”

River water tends to remain near the surface of the Arctic Ocean for five to 15 years, and the land-derived dissolved organic carbon from all sources and years is therefore mixed. Various samples gave radiocarbon average ages varying from 680 to 3,770 years, including both carbon from land-derived and marine sources. The researchers analyzed dissolved lignin phenols to determine the portion of a particular sample that had originated on land, as the compound is related only to terrestrial plant material.

The East Greenland Current is the major source of both Arctic Ocean water and its dissolved organic carbon component reaching the North Atlantic Ocean. The study concludes that the land- derived dissolved organic carbon reaching the Atlantic via this current is much younger than the marine component. In fact, up to half of it reaches the Atlantic, some three to 12 teragrams [three million to 13 million tons]. The fate of the young land-derived dissolved organic carbon in the Atlantic Ocean is uncertain, but there is no evidence of this material at lower latitudes in the Atlantic, the researchers say.

“This suggests most of the land-derived organic carbon ends up being oxidized to carbon dioxide and thus eventually cycles back into the atmosphere,” says Benner. “If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming.”

The research was funded by the U.S. National Science Foundation and the German Federal Ministry of Education and Research.

Media Contact

Harvey Leifert AGU

Weitere Informationen:

http://www.agu.org

Alle Nachrichten aus der Kategorie: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Microscopy beyond the resolution limit

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages…

Material found in house paint may spur technology revolution

Sandia developed new device to more efficiently process information. The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back…

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship

Nearly every organism hosts a collection of symbiotic microbes–a microbiome. It is now recognized that microbiomes are major drivers of health in all animals, including humans, and that these symbiotic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close