Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What even Einstein didn't know

20.09.2018

It provides the basis for solar energy and global communications: the photoelectric effect. Albert Einstein described it over a century ago. For the first time, scientists from the Technical University of Munich (TUM), the Max-Planck Institute of Quantum Optics (MPQ), and the TU Wien have now measured the absolute duration of the light absorption and of the resulting photoelectron which is released from a solid body.

When a solid body is irradiated with X-rays, electrons separate from it and move towards the surface. But how long does this take? This question was investigated by the international research team led by Prof. Reinhard Kienberger from the Chair of Laser and X-ray Physics at the TUM, who comes from the province of Salzburg.


Kienberger's team has developed a measurement method that allows to determine the time between the recording of an X-ray photon and the emission of an electron.

A. Heddergott/ TUM

This is because in the past, only the direction and energy of the electrons could be determined. Previously, the path of the electrons, e.g. through a crystal, could not be observed due to its microscopic dimensions and the extremely short duration of the process.

Iodine atoms used as stopwatches

However, the international team developed a new measuring method which now allows the time between the absorption of an X-ray photon and the emission of an electron to be determined. For this purpose, the physicists "glued" individual iodine atoms to a tungsten crystal and exposed it to X-ray flashes which triggered the photoelectric effect. Because the iodine atoms react extremely quickly to incident X-rays, they serve as light and electron stopwatches.

In order to increase the precision of the measurement, these stopwatches were then calibrated in a further experiment with an only recently developed absolute reference (see second publication below). "This allows the emission of the photoelectrons from a crystal to be determined with an accuracy of a few attoseconds", says Reinhard Kienberger. An attosecond is a billionth of a billionth of a second.

The measurement shows that photoelectrons from the tungsten crystal can be generated in around 40 attoseconds — around twice as fast as expected. This is due to the fact that light of certain colors interacted primarily with the atoms in the uppermost level of the tungsten crystal.

Another interesting effect was also observed during the experiment: Electrons from atoms on the surface of a crystal are freed even faster. Upon being irradiated with X-rays, they immediately released electrons without a measurable delay. This could be interesting for the manufacturing of particularly quick photocathodes for an application in a free-electron laser, concluded the TUM researchers, as they now know how to accelerate or manipulate the photon-electron conversion.

Furthermore, the new method can also be used to examine the behavior of complicated molecules on surfaces — a promising approach to e.g. develop innovative new solar cells. With the knowledge of these hitherto unknown photochemical processes, technical applications can now be optimized even further.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Reinhard Kienberger
Physik-Department E11
Technical University of Munich
Phone: +49 89 289 12840
Mail: reinhard.kienberger@tum.de

Originalpublikation:

M. Ossiander, J. Riemensberger, S. Neppl, M. Mittermair, M. Schaeffer, A. Duensing, M. S. Wagner, R. Heider, M.Wurzer, M. Gerl, M. Schnitzenbaumer, J.V. Barth, F. Libisch, C. Lemell, J. Burgdoerfer, P. Feulner, R. Kienberger: Absolute Timing of the Photoelectric Effect, Nature 09/2018.

M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger and M. Schultze:
Attosecond correlation dynamics, Nature physics, 7. November 2016. DOI: 10.1038/nphys3941

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34949/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Electrons TUM X-ray iodine atoms photoelectric effect solar cells

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>