Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using lasers to study explosions

04.09.2019

A broadly tunable laser, known as an external cavity quantum cascade laser, is providing valuable and never-before-seen insight into explosive fireballs

An explosion is a complex event involving quickly changing temperatures, pressures and chemical concentrations. In a paper in the Journal of Applied Physics, from AIP Publishing, a special type of infrared laser, known as a swept-wavelength external cavity quantum cascade laser (swept-ECQCL), is used to study explosions.


An explosion is a complex event involving quickly changing temperatures, pressures and chemical concentrations. A special type of infrared laser, known as a swept-wavelength external cavity quantum cascade laser, can be used to study explosions. This versatile instrument has a broad wavelength tuning range that allows the measurement of multiple chemical substances in an explosive fireball. The ability to measure and monitor the dramatic changes during explosions could help scientists understand and even control them. This image shows how a swept-wavelength external cavity quantum cascade laser measures rapid changes in infrared light absorbed by molecules inside an explosive detonation.

Credit: Mark C. Phillips

Usage Restrictions: Journalists may use this image only with appropriate credit.

This versatile instrument has a broad wavelength tuning range that allows the measurement of multiple chemical substances, even large molecules, in an explosive fireball.

The ability to measure and monitor the dramatic changes during explosions could help scientists understand and even control them. Measurements using rugged temperature or pressure probes placed inside an exploding fireball can provide physical data but cannot measure chemical changes that may be generated during the explosion. Sampling the end products of a detonation is possible but provides information only once the explosion is over.

In this work, molecules in the fireball are detected by monitoring the way they interact with light, especially in the infrared region. These measurements are fast and can be taken a safe distance away. Since fireballs are turbulent and full of strongly absorbing substances, lasers are needed.

Using a new instrument built in their lab, the investigators measured explosive events at faster speeds, at higher resolutions and for longer time periods than previously possible using infrared laser light.

"The swept-ECQCL approach enables new measurements by combining the best features of high-resolution tunable laser spectroscopy with broadband methods such as FTIR," co-author Mark Phillips explained.

The study looked at four types of high-energy explosives, all placed in a specially designed chamber to contain the fireball. A laser beam from the swept-ECQCL was directed through this chamber while rapidly varying the laser light's wavelength. The laser light transmitted through the fireball was recorded throughout each explosion to measure changes in the way infrared light was absorbed by molecules in the fireball.

The explosion produces substances such as carbon dioxide, carbon monoxide, water vapor and nitrous oxide. These can all detected by the characteristic way each absorbs infrared light. Detailed analysis of the results provided the investigators with information about temperature and concentrations of these substances throughout the explosive event. They were also able to measure absorption and emission of infrared light from tiny solid particles (soot) created by the explosion.

The swept-ECQCL measurements provide a new way to study explosive detonations that could have other uses. In future studies, the investigators hope to extend the measurements to more wavelengths, faster scan rates, and higher resolutions.

###

The article, "Characterization of high-explosive detonations using broadband infrared external cavity quantum cascade laser absorption spectroscopy," is authored by Mark C. Phillips, Bruce E. Bernacki, Sivanandan S. Harilal, Brian E. Brumfield, Joel M. Schwallier and Nick G. Glumac. The article will appear in the Journal of Applied Physics on Sept. 3, 2019 (DOI: 10.1063/1.5107508). After that date, it can be accessed at https://aip.scitation.org/doi/full/10.1063/1.5107508.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5107508

More articles from Physics and Astronomy:

nachricht Chemical element potassium detected in an exoplanet atmosphere
04.09.2019 | Leibniz-Institut für Astrophysik Potsdam

nachricht An astonishing parabola trick
03.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Nanodiamonds in the brain

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

The blood-brain barrier is a physiological boundary layer that works highly selectively and thus protects the brain: On the one hand, pathogens or toxins are...

Im Focus: Entanglement sent over 50 km of optical fiber

For the first time, a team led by Innsbruck physicist Ben Lanyon has sent a light particle entangled with matter over 50 km of optical fiber. This paves the way for the practical use of quantum networks and sets a milestone for a future quantum internet.

The quantum internet promises absolutely tap-proof communication and powerful distributed sensor networks for new science and technology. However, because...

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

 
Latest News

Corals take control of nitrogen recycling

04.09.2019 | Ecology, The Environment and Conservation

Using lasers to study explosions

04.09.2019 | Physics and Astronomy

Study tests performance of electric solid propellant

04.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>