Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Metal Insulator Materials: The hot electron's effect

19.12.2019

You can't really see them, but you can follow the energy flow like in a flip book: Physicists from the University of Duisburg-Essen (UDE) have investigated the energy transfer in a metal insulator material and published their results in "Physical Review B". In the long term, they could contribute to solving the heat problem in microelectronics through targeted material design.

Laptops and servers would be doomed to heat-death if there were no energy-guzzling and voluminous technology to cool the sensitive circuits. Unwanted, but so far unavoidable waste heat is an expensive problem.


Electron diffraction pattern of the sample (false color representation).

N. Rothenbach et al., Phys. Rev. B 100 (2019)

If we trace its cause back to the atomic level, we end up with the electron, which makes its way through various materials. But how exactly?

This has been investigated by UDE's physicists from the Collaborative Research Centre "Non-Equilibrium Dynamics of Condensed Matter in the Time Domain". To this end, they investigated a material consisting of alternating thin layers of metal (iron) and insulator (magnesium oxide) using a pump-probe method:

A laser pulse injects energy into the system, a short time later an X-ray beam reads a snapshot of how it propagates in the form of "hot electrons" in the material. "If we increase the temporal distance between the two pulses evenly, we can follow the process as in a film," experimental physicist Dr. Andrea Eschenlohr explains.

Reaction in a trillionth of a second

The result: In less than one picosecond (0.000 000 000 001 s), the hot electrons excite the metal lattice; almost simultaneously, the interface between the materials begins to oscillate. Another picosecond later, the insulator also reacts.

"The latter surprised us," says Eschenlohr. "We didn't expect these interfacial vibrations to be so important." Theoretical simulations confirmed the results in detail.

Now the physicists want to investigate more complex systems and generalize the results as much as possible. "Over the long term, it might be achievable to tailor a precisely adjusted material mix for different tasks and to solve the problem with waste heat".

The publication was jointly published by the working groups of Prof. Dr. Uwe Bovensiepen, Prof. Dr. Rossitza Pentcheva and Prof. Dr. Heiko Wende.

Editor: Birte Vierjahn, +49 203 37 9-8176, birte.vierjahn@uni-due.de

Wissenschaftliche Ansprechpartner:

Dr. Andrea Eschenlohr, +49 203 37 9-4531, andrea.eschenlohr@uni-due.de

Originalpublikation:

N. Rothenbach, M. E. Gruner, K. Ollefs, C. Schmitz-Antoniak, S. Salamon, P. Zhou, R. Li, M. Mo, S. Park, X. Shen, S. Weathersby, J. Yang, X. J. Wang, R. Pentcheva, H. Wende, U. Bovensiepen, K. Sokolowski-Tinten, and A. Eschenlohr
Microscopic nonequilibrium energy transfer dynamics in a photoexcited metal/insulator heterostructure
Phys. Rev. B 100, 174301 (2019)
DOI: 10.1103/PhysRevB.100.174301

Birte Vierjahn | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-duisburg-essen.de/

More articles from Physics and Astronomy:

nachricht Astronomers discover class of strange objects near our galaxy's enormous black hole
16.01.2020 | University of California - Los Angeles

nachricht MOSHEMT—innovative transistor technology reaches record frequencies
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>