Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst physicists contribute to dark matter detector success

22.02.2018

In the quest for evidence of dark matter, physicist Andrea Pocar of UMass Amherst and his students have played a role in designing and building a part of the argon-based DarkSide-50 detector in Italy.

In researchers' quest for evidence of dark matter, physicist Andrea Pocar of the University of Massachusetts Amherst and his students have played an important role in designing and building a key part of the argon-based DarkSide-50 detector located underground in Italy's Gran Sasso National Laboratory.


Undergraduate Arthur Kurlej welding the grid electrode onto its support ring inside the radon-suppressed clean room in the underground laboratory at Gran Sasso, Italy. Kurlej's advisor, physics professor Andrea Pocar, says undergraduates were notably helpful in designing and making this component of the dark matter detector there, known as DarkSide-50.

Credit: UMass Amherst

This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elusive material in Weakly Interacting Massive Particles (WIMPs) by the DarkSide-50 detector. WIMPs have been candidate dark matter particles for decades, but none have been found to date.

Pocar says the DarkSide detector has demonstrated the great potential of liquid argon technology in the search for so-called "heavy WIMPs," those with mass of about 100 to 10,000 times the mass of a proton. Further, he adds, the double-phase argon technique used by the DarkSide-50 detector has unexpected power in the search for "low-mass WIMPs," with only 1-10 times the mass of a proton.

He adds, "The component we made at UMass Amherst, with very dedicated undergraduates involved from the beginning, is working very well. It's exciting this week to see the first report of our success coming out at the symposium." His graduate student Alissa Monte, who has studied surface and radon-related backgrounds using DarkSide-50, will present a poster at the UCLA meeting.

Pocar says, "There is a vibrant community of researchers around the world conducting competing experiments in this 'low mass' WIMP area. Over the past two years we collected data for a measurement we didn't expect to be able to make. At this point we are in a game we didn't think we could be in. We are reporting the high sensitivity we have achieved with the instrument, which is performing better than expected." Sensitivity refers to the instrument's ability to distinguish between dark matter and background radiation.

Dark matter, Pocar explains, represents about 25 percent of the energy content of the universe and while it has mass that can be inferred from gravitational effects, physicists have great difficulty detecting and identifying it because it hardly interacts, if at all, with "regular" matter through other forces. "Dark matter doesn't seem to want to interact much at all with the matter we know about," the physicist notes.

The DarkSide-50 detector uses 50 kg (about 110 lbs.) of liquid argon in a vat, with a small pocket of argon gas at the top, Pocar explains, as a target to detect WIMPs. The researchers hope for a WIMP to hit the nucleus of an argon atom in the tank, which then can be detected by the ionization produced by the nuclear recoil in the surrounding argon medium. Some of the ionization signal, proportional to the energy deposited inside the detector, is collected by applying an electric field to the target, he explains.

A flash of light is also produced in the argon with ionization, Pocar says. For high-enough energy events, the light pulse is bright enough to be used to tell the difference in "signature" between a nuclear recoil like that induced by a WIMP, and electron recoils induced by background or environmental radioactivity.

Pocar's lab designed, made and installed one of the electrodes that apply the electric field. He says, "For low-mass WIMPs, the amount of energy transmitted to the nucleus of argon by a WIMP is incredibly tiny. It's like hitting a billiard ball with a slow ping-pong ball. But a key thing for us is that now with two years of data, we have an exquisite understanding of our detector and we understand all non-WIMP events very well. Once you understand your detector, you can apply all that understanding in search mode, and plan for follow-up experiments."

Cristiano Galbiati, spokesperson for the DarkSide project, said at this week's symposium, "This is the best way to start the adventure of the future experiment DarkSide-20k. The results of DarkSide-50 provide great confidence on our technological choices and on the ability to carry out a compelling discovery program for dark matter. If a detector technology will ever identify convincingly dark matter induced events, this will be it."

###

The DarkSide-50 apparatus and experiments are supported by the Italian National Institute for Nuclear Physics, which operates the Gran Sasso Laboratory, the U.S. National Science Foundation, and funding agencies at collaborating institutions in Brazil, China, France, Poland, Spain and Russia.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-2989

 @umassscience

http://www.umass.edu 

 

Janet Lathrop | EurekAlert!

Further reports about: Laboratory Nuclear Physics dark matter detector electric field ionization

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>