Researchers invent tiny, light-powered wires to modulate brain's electrical signals

The rod at top right is positioned to modify electrical signaling between the neurons. The entire image is smaller than the diameter of a single human hair. Credit: Parameswaran et al/University of Chicago

A new University of Chicago study shows how tiny, light-powered wires could be fashioned out of silicon to provide these electrical signals. Published Feb. 19 in Nature Nanotechnology, the study offers a new avenue to shed light on–and perhaps someday treat–brain disorders.

Ten years ago, the science world was alive with speculation about a recently discovered technique called optogenetics, which would manipulate neural activity with light. The problem is that it has to be done with genetics: inserting a gene into a target cell that would make it respond to light. Other ways of modulating neurons have since been suggested, but a perfect alternative remains elusive.

A team led by Asst. Prof. Bozhi Tian built minuscule wires previously designed for solar cells. These nanowires are so small that hundreds of them could sit side by side on the edge of a sheet of paper–putting them on the same scale as the parts of cells they're trying to communicate with.

These nanowires combine two types of silicon to create a small electrical current when struck by light. Gold, diffused by a special process onto the surface of the wire, acts as a catalyst to promote electrochemical reactions.

“When the wire is in place and illuminated, the voltage difference between the inside and outside of the cell is slightly reduced. This lowers the barrier for the neuron to fire an electrical signal to its neighboring cells,” Tian said.

The team tested the approach with rat neurons grown in a lab, and saw they could indeed trigger neurons to fire these electrical signals.

“The nice thing about it is that both gold and silicon are biologically compatible materials,” said graduate student Ramya Parameswaran, the first author on the study. “Also, after they're injected into the body, structures of this size would degrade naturally within a couple of months.”

“It's a fundamental but very promising approach,” Tian said. They plan next to test the system in animals, which could both help researchers further understand how these electrical signals work in the brain as well as suggest ways to address problems like Parkinson's disease or psychiatric disorders.

###

The other co-authors were Francisco Bezanilla, the Lillian Eichelberger Cannon Professor of Biochemistry and Molecular Biology; Erin Adams, the Joseph Regenstein Professor of Biochemistry and Molecular Biology; graduate students John Zimmerman (now at Harvard), Kelliann Koehler, Yuanwen Jiang and Andrew Phillips; postdoctoral researchers Jaeseok Yi and João Carvalho-de-Souza; and undergraduate student Michael Burke.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Media Contact

Louise Lerner EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Electrochemical setup for CO2 reduction with nickel-copper catalyst

CO₂ Reduction in Exhaust Gases Breathes Life into Earth’s Climate

To protect the climate, the aim is to recover CO₂ from combustion processes for use as valuable materials. This is challenging because exhaust gases contain not only CO₂ but also…

• Featured image showing cancer patients engaging in tailored exercise programs to improve muscular strength and fitness.

Tailored Fitness Programs Linked to Increased Life Expectancy in Cancer Patients

Tailored exercise may prolong life in these patients, suggest researchers Muscular strength and good physical fitness are linked to a significantly lower risk of death from any cause in people…

Urban stormwater detention basin affected by salt pollution and salt-tolerant plants

Going Green: Fighting Freshwater Salt Pollution with Phytoremediation

Salt pollution in freshwater is a growing global concern. Excessive salt harms plants, degrades soil, and compromises water quality. In urban areas, road salts used for de-icing during winter often…