Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small currents for big gains in spintronics

13.06.2019

A new low-power magnetic switching component could aid spintronic devices

UTokyo researchers have created an electronic component that demonstrates functions and abilities important to future generations of computational logic and memory devices.


This diagram shows how magnetization reverses in a GaMnAs crystal.

Credit: © 2019 Tanaka-Ohya Laboratory

It is between one and two orders of magnitude more power efficient than previous attempts to create a component with the same kind of behavior. This fact could help it realize developments in the emerging field of spintronics.

If you're a keen technophile and like to keep up to date with current and future developments in the field of computing, you might have come across the emerging field of spintronic devices. In a nutshell, spintronics explores the possibility of high-performance, low-power components for logic and memory.

It's based around the idea of encoding information into the spin -- a property related to angular momentum -- of an electron, rather than by using packets of electrons to represent logical bits, 1s and 0s.

One of the keys to unlock the potential of spintronics lies in the ability to quickly and efficiently magnetize materials. University of Tokyo Professor Masaaki Tanaka and colleagues have made an important breakthrough in this area. The team has created a component -- a thin film of ferromagnetic material -- the magnetization of which can be fully reversed with the application of very small current densities.

These are between one and two orders of magnitude smaller than current densities required by previous techniques, so this device is far more efficient.

"We are trying to solve the problem of the large power consumption required for magnetization reversal in magnetic memory devices," said Tanaka. "Our ferromagnetic semiconductor material -- gallium manganese arsenide (GaMnAs) -- is ideal for this task as it is a high-quality single crystal. Less ordered films have an undesirable tendency to flip electron spins. This is akin to resistance in electronic materials and it's the kind of inefficiency we try to reduce."

The GaMnAs film the team used for their experiment is special in another way too. It is especially thin thanks to a fabrication process known as molecular beam epitaxy. With this method devices can be constructed more simply than other analogous experiments which try and use multiple layers rather than single-layer thin films.

"We did not expect that the magnetization can be reversed in this material with such a low current density; we were very surprised when we found this phenomenon," concludes Tanaka.

"Our study will promote research of material development for more efficient magnetization reversal. And this in turn will help researchers realize promising developments in spintronics."

Media Contact

Masaaki Tanaka
masaaki@ee.t.u-tokyo.ac.jp
81-358-416-728

 @UTokyo_News_en

http://www.u-tokyo.ac.jp 

Masaaki Tanaka | EurekAlert!
Further information:
http://doi.org/10.1038/s41467-019-10553-x
http://dx.doi.org/10.1038/s41467-019-10553-x

More articles from Physics and Astronomy:

nachricht Hubble discovers mysterious black hole disc
12.07.2019 | ESA/Hubble Information Centre

nachricht What happens when you explode a chemical bond?
12.07.2019 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>