Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence for organic compounds in deep space

19.04.2002


The mysterious spectral bands in the infrared of interstellar gas clouds in deep space originate from organic compounds. Research by the Nijmegen physicist Hans Piest confirms this. He has provided new experimental evidence for this almost 30-year-old problem in astronomy.



Each molecule has specific wavelengths at which it can either absorb or emit light. This forms the fingerprint of a substance. With this fingerprint, astronomers can demonstrate the presence of a substance in a distant star or cloud. In a wide range of lines of sight, in the almost empty interstellar space, bright infrared emission is observed, the spectrum of which has become commonly known as the “Unidentified Infrared Bands”. The most widely accepted hypothesis is that complex organic compounds cause the bands. Put more precisely it is thought to be a mixture of various polyaromatic hydrocarbons, each containing about fifty carbon atoms. Nobody had yet succeeded in measuring the spectrum of these complex molecules under conditions comparable to the cold gas situation in deep space where these spectra are found. In deep space the molecules are so far apart that they no longer collide with each other. Collisions dramatically influence the spectrum. It is difficult to create a collision-free situation in the laboratory. Furthermore, the substance is so rarefied that a spectrum can scarcely be measured. Hans Piest found a way of measuring the spectrum indirectly. For this he made use of a special laser from the Institute for Plasma Physics (FOM) in Rijnhuizen. It is a free-electron laser which can produce every desired wavelength between 5 and 250 microns. There are only a few examples of this type of laser in the world. The physicist synthesised polyaromatic hydrocarbons and bound each of these molecules to a noble gas atom. This can only be done at a temperature just above absolute zero. The bonding energy of noble gas atoms is so small that it scarcely affects the spectrum. In order to investigate which wavelengths this complex can absorb he bombarded its with laser light, using a different wavelength for each bombardment. The light from this laser is sufficient to disassociate the weakly bound noble gas molecule from the organic compound. A sensitive mass spectrometer was able to determine whether the organic substance was produced as a function of the infrared wavelength. The physicist used various noble gas atoms and repeatedly obtained the same spectrum. This strongly indicates that the noble gas did not disrupt the spectrum. The spectra measured strongly agreed with previously disputed measurements from NASA. They had directly determined the very weak absorption spectrum of various sorts of polyaromatic hydrocarbons frozen in noble gas ice. These measurements were controversial because the influence of the noble gas ice was difficult to estimate. Now the question still remains as to exactly which polyaromatics are found in space.

Michel Philippens | alphagalileo

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>