Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was adolescent galaxy a gang member?

18.03.2002


Where’s the matter? MS1512-cB58 (arrowed) may be surrounded by it.
© ESO


Light bending reveals clumps of matter around early galaxy.

European astronomers have got their first glimpse of the soup of matter that surrounded a galaxy in the early Universe, just 3 billion years after the Big Bang. Their results provide clues as to how this matter got together, which is crucial to understanding why the Universe looks the way it does today1.

The 12-billion-year-old galaxy is called MS 1512-cB58. It is not the earliest galaxy known, but because of a cosmic coincidence it is by far the brightest of its vintage.



MS 1512-cB58’s light would be too weak to be seen but for a light-bending cluster of more recent galaxies lying between it and the Earth. This cluster magnifies MS 1512-cB58 - a phenomenon called gravitational lensing. "Without it we’d just see a normal galaxy very faintly," says Sandra Savaglio of the Rome Astronomical Observatory in Monteporzio, Italy.

Working with the European Southern Observatory’s Very Large Telescope in Chile’s Atacama Desert, Savaglio’s team found that intervening clouds of dust and gas had scattered ultraviolet light from MS 1512-cB58, as it does all light from distant objects.

But their results suggest that there is a lot of material in the immediate environment of MS 1512-cB58 - possibly a gang of other galaxies. It could be more clouds of gas, but it may be a vast cluster of galaxies called a supercluster. "Where there is gas, there are probably stars and forming galaxies," says Savaglio.

This is crucial information to astronomers. They know that matter cooled and slowly clumped together after the Big Bang, forming stars and galaxies. But how much of this stuff there was, and how quickly it came together, is a mystery.

Savaglio’s results suggest that it happened relatively quickly. "If 12 billion years ago there were already clusters of clouds, it means that the Universe was in a very evolved state," she says.

Chuck Steidel, who studies galaxy formation at the California Institute of Technology in Pasadena, is cautious about drawing conclusions from measurements of a single galaxy. He views Savaglio’s findings rather as proof that galaxies can be used to do background surveys of matter in the Universe.

Unfortunately MS 1512-cB58 is the only galaxy that can be used to study the distribution of matter using today’s technology. Future telescopes - like the proposed Next Generation Space Telescope - may be able to probe the matter surrounding galaxies just as old without the help of a gravitational lens. This should make thousands of galaxies available for study.

Savaglio’s team bent over backwards to see the magnified galaxy. MS 1512-cB58 lies in the Earth’s northern skies, yet the VLT is in the south. There are northern telescopes more powerful than the VLT, but none is sensitive enough to the ultraviolet light that Savaglio’s team were looking for. So they pointed the telescope just above the horizon in the Chile’s northern sky to see MS 1512-cB58. "It was practically lying down," recalls Savaglio.

References

  1. Savaglio, S., Panagia, N. & Padovani, P. The Lya forest of a lyman break galaxy: Very Large Telescope spectra of MS 1512-cB58 at z=2.724. The Astrophysical Journal, 567, 702 - 711, (2002).

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>