Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dig deeper to find Martian life

30.01.2007
Probes designed to find life on Mars do not drill deep enough to find the living cells that scientists believe may exist well below the surface of Mars, according to research led by UCL (University College London).

Although current drills may find essential tell-tale signs that life once existed on Mars, cellular life could not survive the radiation levels for long enough any closer to the surface of Mars than a few metres deep – beyond the reach of even state-of-the-art drills.

The study, published in the journal ‘Geophysical Research Letters’ (GRL), maps out the cosmic radiation levels at various depths, taking into account different surface conditions on Mars, and shows that the best place to look for living cells is within the ice at Elysium, the location of the newly discovered frozen sea on Mars.

The lead author, Lewis Dartnell, UCL Centre for Mathematics and Physics in the Life Sciences & Experimental Biology (CoMPLEX), said: “Finding hints that life once existed – proteins, DNA fragments or fossils – would be a major discovery in itself, but the Holy Grail for astrobiologists is finding a living cell that we can warm up, feed nutrients and reawaken for studying.

“It just isn’t plausible that dormant life is still surviving in the near-subsurface of Mars – within the first couple of metres below the surface – in the face of the ionizing radiation field. Finding life on Mars depends on liquid water surfacing on Mars, but the last time liquid water was widespread on Mars was billions of years ago. Even the hardiest cells we know of could not possibly survive the cosmic radiation levels near the surface of Mars for that long.”

Survival times near the surface reach only a few million years. This means that the chance of finding life with the current probes is slim. Scientists will need to dig deeper and target very specific, hard-to-reach areas such as recent craters or areas where water has recently surfaced.

Dr Andrew Coates, UCL Department of Space & Climate Physics, said: “This study is trying to understand the radiation environment on Mars and its effect on past and present life. This is the first study to take a thorough look at how radiation behaves in the atmosphere and below the surface and it’s very relevant to planned missions. The best chance we have of finding life is looking in either the sea at Elysium or fresh craters.”

The team found that the best places to look for living cells on Mars would be within the ice at Elysium because the frozen sea is relatively recent – it is believed to have surfaced in the last five million years – and so has been exposed to radiation for a relatively short amount of time. H2O provides an ideal shield of hydrogen to protect life on Mars from destructive cosmic radiation particles. Ice also holds an advantage because it is far easier to drill through than rock. Even here, surviving cells would be out of the reach of current drills. Other ideal sites include recent craters, because the surface has been exposed to less radiation, and the gullies recently discovered in the sides of craters, as they are thought to have flowed with water in the last five years.

The team developed a radiation dose model to study the radiation environment for possible life on Mars. Unlike Earth, Mars is not protected by a global magnetic field or thick atmosphere and for billions of years it has been laid bare to radiation from space. The team quantified how solar and galactic radiation is modified as it goes through the thin Martian atmosphere to the surface and underground.

Three different surface scenarios were tested; dry regolith, water ice, and regolith with layered permafrost. The particle energies and radiation doses were measured on the surface of Mars and at regular depths underground, allowing the calculation of cell survival times.

The team took the known radiation resistance of terrestrial cells combined with the annual radiation doses on Mars to calculate the survival time of dormant populations of the cells. Some strains are radiation-resistant and are able to survive the effects because, when active, they successfully repair the DNA breaks caused by ionising radiation. However, when cells are dormant, such as when frozen as in the subsurface of Mars, they are preserved but unable to repair the damage, which accumulates to the point where the cell becomes permanently inactivated.

Mr Dartnell said: “With this model of the subsurface radiation environment on Mars and its effects on the survival of dormant cells we have been able to accurately determine the drilling depth required for any hope of recovering living cells. We have found that this suspected frozen sea in Elysium represents one of the most exciting targets for landing a probe, as the long-term survival of cells here is better than underground in icy rock. This could be crucial for the scientists and engineers planning future Mars missions to find life.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>