Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists’ ‘recipe’ to help build a quantum computer

13.12.2005


Scientists have come up with a “recipe” to help build the world’s first quantum computer – a new generation of super-fast machines set to revolutionise scientific discovery.



Quantum technology could be used to crack codes – valuable for national security – and is already used in some bank transactions. Future developments could involve understanding chemical reactions creating medicines, ultra-fast communications systems and seemingly impossible simulations, such as the creation of our universe.

A quantum computer would use the seemingly magical properties of tiny particles such as atoms to hold, process and transport the vast amounts of information – and all in the fraction of the time it would take a conventional computer.


The atoms would first need to be isolated from the billions around us, then converted into ions (charged atoms) and manipulated to perform tasks by use of electric fields. This is done using an ion trap. Scientists have so far trapped single atoms, but the real challenge lies in being able to orchestrate the millions of atoms needed to build a quantum computer.

Dr Winfried Hensinger, Lecturer in Atomic Molecular and Optical Physics at the University of Sussex, was part of a team in the USA that has developed a new way of mass-manufacturing ion traps using microchip technology.

This technique means that the traps, which need to be the size of a human hair to make a quantum computer of feasible scale, can be made quickly and sophisticated enough to allow useful computations. Details of the research, led by Professor Chris Monroe at the University of Michigan, are published in the science journal Nature Physics.

The process – photolithography – produces a 3-D “nano sculpture”, chemically etched out of gallium arsenide (a semi-conductor material similar to the silicon used in microchips).

Dr Hensinger says: ”Making a nano sculpture to trap single atoms and control their motion is very difficult. What we have done is to refine the recipe used in microchip manufacture to make traps for single atoms. Now we could make any kind of trap we need, in the quantity needed. This takes us a step nearer to building the first quantum computer.”

Quantum computers are important, says Dr Hensinger, because they will help to unlock some of science’s biggest secrets, not only by processing information faster, but giving far more accurate results. He says: “A quantum computer would allow us to solve some very big physics problems, where before the scale of the computer needed, and the time it would take to process data, would make the experiment unfeasible. It will have a huge impact on areas such as chemistry and in understanding nature as we know it. It will revolutionise all of science.”

Dr Hensinger now intends to continue his research into the development of a quantum computer at Sussex, where he has set up the Ion Quantum Technology Group. He says: “This is an exciting time for quantum physics, and for physics at Sussex, where I hope to work with colleagues in developing this work further.”

Maggie Clune | alfa
Further information:
http://www.sussex.ac.uk

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>