Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue professor puts new spin on quantum computer technology

14.10.2004


Purdue University physicists have built a critical component for the development of quantum computers and spintronic devices, potentially bringing advances in cryptography and high-speed database searches a step closer.


atomic force micrograph



A team of researchers including Leonid P. Rokhinson has created a device that can effectively split a stream of quantum objects such as electrons into two streams according to the spin of each, herding those with "up" spin in one direction and corralling those that spin "down" in another. By producing such "spin-polarized" streams, the tiny device could become a key component in quantum computers, which have not yet left the drawing boards of the computer industry but are highly sought-after for their purported facility at cracking codes and searching large databases.

"For the first time, we have achieved spatial spin separation of the ’holes’ in gallium arsenide, the spaces that electrons leave behind as they travel through this semiconductor," said Rokhinson, who is an assistant professor of physics in Purdue’s School of Science. "These holes also have spin characteristics, just as particles do, and separating them according to their spin has been a great challenge. Producing this effect will be critical for the success of any spin-based electronic device, and this separation method could be one of the missing links necessary for the development of quantum computers and non-volatile memory devices." The research appears in the current issue of the journal Physics Review Letters.


Quantum computers, though still in the early stages of development, are highly desired because of their projected ability to solve particular kinds of difficult problems that often arise in cryptography and database searching. These problems often have a very large number of candidate solutions, most of which are incorrect and must be quickly eliminated from the solution pool.

Even the fastest conventional computers, which must test each potential solution before moving on to another, can take an inordinately long time to winnow out the incorrect candidates. But a quantum computer could theoretically test the solutions simultaneously – a process computer scientists refer to as parallel processing. Rokhinson said this is because of a peculiar quantum physical property of particles called entanglement. "Two electrons – one that has ’up’ spin, the other with ’down’ – can be entangled so that anything that affects one affects the other," he said. "The particles remain entangled even if they are separated by great distances."

The two particles’ respective spins, which are opposite but inextricably linked, allow them to form a ’quantum bit,’ or qubit, that can actually be ’on’ and ’off’ simultaneously, or function as both a one and a zero during digital calculations. This ability to represent two conditions at once, multiplied many times over within a computer chip that uses a large number of qubits, could be a powerful tool for sifting through information.

"The trouble is, you have to find a way to measure the final quantum state of the qubit after the calculations have been made to extract useful information from them," Rokhinson said. "Only once you have separated them can you obtain the answer to your calculations. This measurement issue has been one of the big challenges of the field."

Some of the reason behind this difficulty lies in the very weak coupling of spin with the environment. In semiconductor materials, Rokhinson said, spin is coupled many trillions of times less than charge is, and spin experiences comparatively little influence from nearby matter.

"In practical terms, this means you can try to make a particle flip its spin from ’up’ to ’down,’ but it won’t feel you pushing," he said. "Researchers have tried to polarize the particles using everything from light waves to strong magnetic fields, but nothing was working well enough to separate them."

However, Rokhinson’s team discovered that semiconductors made of highly purified gallium arsenide sandwiched between layers of aluminum gallium arsenide possessed a natural property that, when harnessed, could push the quantum spaces, or ’holes,’ into two different directions according to their spin state.

"Although it may seem counterintuitive, the holes have a spin state as well," Rokhinson said. "The spaces don’t literally spin – the idea of spin is just a loose metaphor anyway, to help physicists imagine what’s going on. In an electric current flowing through a copper wire, we imagine electrons jumping from one copper atom’s orbital hole to another. We could also imagine those holes having a positive charge and flowing in the opposite direction. A similar concept is at work here with spin state – we’re just working with the holes this time, not the particles."

It is a natural property of the holes within the semiconductor that Rokhinson’s group has harnessed to divide them up, which could make life simpler for the chip designers who may someday put this hole-herder to use. "The large magnetic fields needed for other methods of spin measurement are not necessary in this device," Rokhinson said. "However, it requires very low temperatures, a fraction of a degree above absolute zero. We will probably need to reproduce the effect at higher temperatures for chips based on this technology to become commercially worthwhile."

But with further development, Rokhinson said, the device might form a key element in a quantum microprocessor. "All spin-based processors require devices that can inject, detect and manipulate particles," he said. "This device can both inject and detect them, and since we already have some knowledge about manipulating particles, it could mean that a major hurdle in the way of developing spintronics devices has been overcome."

Rokhinson said his team would be concentrating on creating a device that also could manipulate the electron holes as well, thus accomplishing all three necessary tasks with a single component. "That would allow us to create a spin-based transistor," he said. "Because semiconductor transistors have had such a dramatic impact on the last few decades of computer development, we are optimistic that this discovery could be significant for the industry."

This research is supported in part by the Defense Advanced Research Projects Agency and the National Science Foundation.

Rokhinson is affiliated with Purdue’s Birck Nanotechnology Center. The center anchors Purdue’s new Discovery Park, located on the southwestern edge of campus. Programs include undergraduate teaching, graduate research and technology transfer initiatives with industry partners.

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>