Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s radiation belts spectacular following Halloween solar storms

08.12.2003


The belt of high-energy electrons that normally cradles Earth from afar was greatly enhanced and pushed unusually close to our atmosphere during the violent solar activity that occurred in late October, University of Colorado at Boulder researchers say.



The results were obtained from observations by NASA’s Solar, Anomalous, and Magnetospheric Particle Explorer, or SAMPEX satellite, said CU-Boulder’s Laboratory for Atmospheric and Space Physics Director Daniel Baker. An investigator on SAMPEX, Baker will present results from the data and the Halloween solar storm at the fall American Geophysical Union meeting in San Francisco Dec. 8 to Dec. 12.

The radiation belts, also known as the Van Allen Belts, are named after their discoverer, James Van Allen. "The outer Van Allen Belt is often rather tame and is made up of modest intensities of energetic electrons," said Baker.


"These negatively charged elementary particles are confined like beads on a string by the magnetic field lines that emanate from Earth’s iron core and extend far out into space like the flux tubes from a giant bar magnet," he said. During the recent high-energy solar activity of late October and early November -- known by scientists as the "Halloween storm" of 2003 -- the outer Van Allen belt was pushed and prodded to a nearly unprecedented degree.

"We have been observing the Van Allen Belts for over 11 years with the SAMPEX spacecraft," said Baker. "We have never seen such a powerful enhancement and distortion of the radiation belts during the lifetime of SAMPEX. Baker noted that the center of the outer Van Allen belt is usually about 12,000 miles to 16,000 miles away from Earth’s surface, as measured above the equatorial region of the Earth.

During the Halloween storm, the Van Allen radiation was greatly increased and pushed inward toward Earth’s surface to an unusually close degree. "From Nov. 1 to Nov.10, the outer belt had its center only about 6,000 miles from Earth’s equatorial surface," he said. "This is a place where ordinarily there are almost no energetic electrons at all."

How the Earth’s radiation belts get so energized and distorted is still largely an unsolved mystery, despite the fact that Van Allen and co-workers discovered the radiation belts more than 45 years ago at the dawn of the space age, he said.

"Researchers have learned a great deal about electron acceleration in the belts in recent years," said Xinlin Li, a professor and researcher at LASP who works closely with Baker. "We are able to understand and forecast more normal changes in the radiation belts using our present theoretical knowledge, but extreme events such as the Halloween storm are very hard to predict."

Other spacecraft such as NASA’s POLAR satellite also observed the powerful radiation belt changes. Shri Kanekal, a researcher at Catholic University in Washington, D.C., who also is affiliated with LASP, has studied the POLAR measurements and compared them with the SAMPEX data. He found the POLAR data confirmed the surprising enhancement and distortion of the Van Allen Belts.

"The changing, raging character of the radiation belts is more than a scientific curiosity," said Baker. "The charged particles within the belts can have profound and deleterious effects on commercial and operational satellites in near-Earth orbit."

As reported in a recent paper submitted to the scientific journal, Eos, by Ramon Lopez of the University of Texas, J. H. Allen of the National Oceanic and Atmospheric Administration in Boulder and CU-Boulder’s Baker, many serious spacecraft failures and "operational anomalies" occurred during and following the Halloween storm. Many of the problems can be directly related to the hostile radiation environment in near-Earth space.

"We are excited to have the chance to study the most extreme events that nature can throw at us," he said. "We hope that in the future, we can predict how even a storm as powerful as the Halloween storm will affect Earth’s environment."


Contact:
Daniel Baker, 303-492-4509, baker@lasp.colorado.edu
Xinlin Li, 303-492-3514
Jim Scott, 492-3114

Daniel Baker | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>