Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT students living on 'Mars' via Utah

27.02.2008
Last week, two MIT students began living, working and communicating with the outside world as if they were on a mission to Mars. Whenever they go outside their small, round habitat where eight people are spending a two-week "mission," they don spacesuits and pass through an airlock. When they send e-mail, it takes 20 minutes before the recipient can see it-the time it takes for radio waves to travel to and from the red planet.

They're not really on Mars, of course-human missions there are not yet even in NASA's long-term schedule and are not expected to take place for at least two decades. So, in order to begin understanding the logistical, mechanical, scientific and psychological issues that a real crew of Mars explorers will someday face, teams have been practicing the details of Mars exploration in several Mars-base simulators in some of Earth's most Mars-like places. The most heavily used simulation is the Mars Society Desert Research Station, near Hanksville, Utah, which was built in 2002 by the Mars Society.

Engineering graduate students Zahra Khan and Phillip Cunio, from the Department of Aeronautics and Astronautics, began their stay at the Utah facility on Sunday, Feb. 17. Cunio is working on a project to develop a "smart" carrier to be used for research fieldwork in remote expeditions such as planetary exploration. The footlocker-sized container and its contents are fitted with radio-frequency ID tags, so that it constantly keeps track of its contents and can alert people if supplies are about to run out or if an item has been misplaced. Running out of supplies is not just an inconvenience-on a faraway planetary surface it could be a life-or-death issue.

Khan's job was concentrating on the logistics of making exploratory trips through the desert to carry out geological and biological research. The team uses all-terrain vehicles to travel around while wearing their simulated spacesuits and then takes soil samples and conducts other tests at various locations. Halfway through the planned two-week mission, Khan cut her stay short when she was unexpectedly called to Amsterdam for a job interview with the European Space Agency.

Although part of the mission's purpose is to find out about practical issues in working in difficult circumstances, the research itself is also very real. They have been looking for organisms that live in the hostile, dry and salty desert environment, both to develop techniques for conducting such biological research and to learn about how organisms survive in these somewhat Mars-like conditions.

Both Khan and Cunio would like to be involved in real Mars missions someday. Khan's research is on entry, descent and landing systems for human missions to Mars. These will require much gentler, more-controlled descents than past missions, such as the Mars rovers that hit the ground at high speed shielded by airbags and then bounced for several minutes before coming to a stop.

Khan says she would like to go to Mars herself, but thinks that with the slow progress of NASA's plans in that direction, "the odds may not be very good. I think it would be a good idea to send younger people," and by the time such missions take place that may leave her out.

"I'm an advocate of one-way trips to Mars," she says, because the logistics of such trips would be far easier without the requirement for all the fuel needed for a return. For a given spacecraft, she says, you could send six people on a two-way mission or 24 people for a one-way trip. "If you're going to go there, you might as well not waste the resources."

Cunio's research studies the design of self-sustaining life-support systems for Mars colonists, as well as for missions to the moon or other destinations. "We're studying the commonalities in life support and environmental control systems," he says, so that planners don't have to start from scratch in planning missions to different places.

"We want to minimize the development costs and risks."

Anyone interested in following the progress of the Mars-like mission can observe the team in action by way of a set of web cams that display live images inside and outside the habitat, at www.freemars.org/mdrscam. Detailed daily reports on their activities can be found online at www.marssociety.com/mdrs/fs07/crew67 (click on "daily crew reports").

Cunio is also blogging about his experiences during the mission, mainly as a way of helping to inspire younger students to get interested in space exploration. His blog is at exepsilonmars.blogspot.com. Cunio has made contact with several schools around the United States and Canada, and will participate in real-time question-and-answer sessions with some of the classes during the mission.

Written by David Chandler, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www
http://www.freemars.org/mdrscam
http://www.marssociety.com/mdrs/fs07/crew67

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>