Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian “Laska” Laser to Measure Particles

01.02.2008
Researchers from St. Petersburg have designed and produced a device that enables to promptly and accurately identify the sizes of micro- and nano-particles. The laser ray illuminates the object in the device so that to judge about the particle sizes by intensity of light diffused by the particles.

Specialists of the St. Petersburg Research-and-Production Firm for Analytical Instrument-Making (LUMEX) demonstrated a device that had been long awaited by representatives of various areas of science and engineering. This is the so-called laser analyzer of particle sizes – a device that enables to promptly and accurately identify the sizes of microscopic particles and to distribute them by sizes. In other words, the analyzer helps to measure not only the average diameter of particles, but also to determine the quantity of particles of a certain size in the mixture.

The device operates as follows. The sample is poured into a transparent cuvette. This can be a suspended matter of smallest particles or emulsion – that does not matter. As solid particles (more than a micron in size) usually accumulate rather quickly at the bottom, the sample in the cuvette is being constantly agitated by a special stirrer, at that, the rate of stirring may be, if needed, very high – more than a thousand revolutions per minute. The stirrer is designed in such a way that no gas holes occur in the analyzable medium, which could impede the analysis. However, the stirrer may not be switched on – then there is an opportunity to track for example the speed of precipitation of particles of different sizes.

The cuvette is illuminated by a laser ray. Microparticles diffuse its light, with the angle of deflection being determined by the size of each particle. The multielement detector records this scattered radiation, thus allowing to measure intensity of beaming at different angles of deflection. Certainly, it is impossible to “pull out” the information on the particle sizes directly from this data, but the light diffusion theory has already been developed for this purpose – “three-story” equations comprehensible only for specialists, which are not needed to others for the most part. It is sufficient for the users to know that the particle size is promptly and accurately calculated in such a way by the computer, certainly with the help of the software also developed by the LUMEX specialists. The only assumption to be kept in mind is that the particle size is determined by the so-called “hydrodynamic radius” – a “fur coat” consisting of water molecules, ions or some molecules adjacent to the particle and moving together with the particle. So, the size determined for some particles via this method is bigger than it would be seen under the microscope – however, in this case it is needed to compare once the particle analysis results obtained through independent methods and to apply the necessary correction later on. This is always the case with determining the sizes by the laser light diffusion method, though.

It should be noted that till recently the device (called “Laska” by the designers) was intended for analysis of rather big particles, their diameter being no less than a micron. This niche at the analytical instrument-making market was not practically filled – as a rule, the task was solved either with the help of a microscope, which is rather labor-intensive and not always possible, or with the help of highly specialized devices, for example, blood cell counters. As for the nano-range sizes, i.e. the particles smaller than a micron, there existed only one device for them – the so-called nanosizer, the device being good and operating based on the same principle of laser light diffusion, but it is so expensive that there are only few of them available in Moscow .

“Our device already enables to perform analysis of particles of up to 500 nanometers in size, i.e., up to half a micron, says Vladimir Krivoshlyk, one of the developers, head of the group, dispersion department, LUMEX. However, we are working now on the analyzer modification, which would allow to measure sizes of smaller particles. We know already how to do this.”

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Riveting,Screwing, Gluing in Aircraft Construction: Smart Human-Robot Teams Master Agile Production

26.03.2019 | Trade Fair News

Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity

26.03.2019 | Life Sciences

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>