Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray source in nearby galaxy spawns mystery

11.01.2008
Astronomers studying a nearby galaxy have spied a rare type of star system -- one that contains a black hole that suddenly began glowing brightly with X-rays.

Though this type of star system is supposed to be rare, it's the second such system discovered in that galaxy, called Centaurus A.

The discovery suggests that astronomers have more to learn about the lives and deaths of massive stars in galaxies such as our own.

Normally when astronomers study Centaurus A, it's the giant X-ray jets emanating from the heart of the galaxy that steal the show, explained Gregory Sivakoff, a postdoctoral researcher in astronomy at Ohio State University. The jets extend from the galaxy for 13,000 light years in different directions.

But when his team studied Centaurus A with NASA's Chandra X-ray Observatory starting in March 2007, they saw a new X-ray source -- much smaller than the X-ray jets, but still glowing brightly. The source wasn't there during the last survey of the galaxy in 2003, but it shined throughout the time of the new observations, from March to May of 2007.

Because it hadn't been seen before, the astronomers classified the object as a “transient” X-ray source, meaning that the object had been there before 2007, but had only recently brightened enough to stand out.

Sivakoff discussed the results in a press briefing Wednesday, January 9, 2008 at the American Astronomical Society meeting in Austin, Texas.

The newly bright object, dubbed CXOU J132518.2-430304, is most likely a binary star system, the researchers concluded. The two stars likely formed at the same time, with one much more massive than the other. The more massive star evolved more quickly, and collapsed to form a black hole. It is now slowly devouring its companion. Such binary systems are thought to be extremely rare.

But this is the second bright, transient X-ray binary system discovered in Centaurus A -- and that's the problem, Sivakoff said.

“When we look at other galaxies like Centaurus A, we don't see these bright, transient X-ray binaries,” he said. “But now we've found two such objects in Centaurus A, and the implication is that we may not understand these objects as well as we thought we did.”

“So right now, our discovery is actually pointing to a puzzle rather than a solution.”

Because Centaurus A is near to our galaxy, astronomers have long hoped to use it as a Rosetta stone for studying other galaxies with black holes.

As astronomers piece together an explanation for the existence of the newly-discovered binary system, they may gain a better understanding of how black holes form from massive stars and how binary systems evolve.

“These binary systems are signposts of the massive stars that once existed in galaxies like Centaurus A. To understand the massive stars, we must first know how to read the signs,” he said.

Sivakoff and Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics led the study; their collaborators were from NASA Goddard Space Flight Center, Oak Ridge Associated Universities, University of Hertfordshire, University of Virginia, University of Bristol, McMaster University, and the University of Birmingham.

This research was sponsored by NASA.

Gregory Sivakoff | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Matter falling into a black hole at 30 percent of the speed of light
24.09.2018 | Royal Astronomical Society

nachricht Scientists solve the golden puzzle of calaverite
24.09.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>