Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsating Star Sheds Light on Exoplanet

31.07.2013
A team of researchers has devised a way to measure the internal properties of stars—a method that offers more accurate assessments of their orbiting planets.

The research, which appears in Proceedings of the National Academy of Sciences, was conducted by a multi-national team of scientists, including physicists at New York University, Princeton University, and the Max Planck Institute for Solar System Research.


Image courtesy of MPI for Solar System Research/Mark A. Garlick (www.markgarlick.com).

An artistic rendering of HD 52265 and its orbiting Jupiter-like planet.

The researchers examined HD 52265—a star approximately 92 light years away and nearly 20 percent more massive than our Sun. More than a decade ago, scientists identified an exopanet—a planet outside our Solar System—in the star’s orbit. HD 52265, then, served as an ideal model for both measuring stars’ properties and how such properties can shed light on planetary systems.

Previously, scientists inferred stars’ properties, such as radius, mass, and age, by considering observations of their brightness and color. Often these stars’ properties were not known to sufficient accuracy to further characterize the nearby planets.

In the PNAS study, the scientists adopted a new approach to characterize star-planet systems: asteroseismology, which identifies the internal properties of stars by measuring their surface oscillations. Some have compared this approach to seismologists’ use of earthquake oscillations to examine the earth’s interior.

Here, they were able to make several assessments of the star’s traits, including its mass, radius, age, and—for the first time— internal rotation. They used the COROT space telescope, part of a space mission led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA), to detect tiny fluctuations in the intensity of starlight caused by starquakes. The researchers confirmed the validity of the seismic results by comparing them with independent measurements of related phenomena. These included the motion of dark spots on the star’s surface and the star’s spectroscopic rotational velocity.

Unlike other methods, the technique of asteroseismology returns both the rotation period of the star and the inclination of the rotation axis to the line of sight.

The scientists could then use these findings to make a more definitive determination of an orbiting exoplanet. While it had previously been identified as an exoplanet by other scientists, some raised doubts about this conclusion, positing that it could actually be a brown dwarf—an object too small to be a star and too large to be a planet.

But, armed with the precise calculations yielded by asteroseismology, the researchers on the PNAS study were able to enhance the certainty of the earlier conclusion. Specifically, given the inclination of the rotation axis of HD 52265 and the minimum mass of the nearby exoplanet, the researchers could infer the true mass of the latter—which was calculated to be roughly twice that of our planet Jupiter and therefore too small to be a brown dwarf.

The study’s authors included: Katepalli Sreenivasan, president of Polytechnic Institute of NYU and dean of engineering at NYU; Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU’s Courant Institute of Mathematical Sciences; and Laurent Gizon, director of the Max Planck Institute for Solar System Research and a professor at the University of Goettingen in Germany.

James Devitt | Newswise
Further information:
http://www.nyu.edu

Further reports about: Exoplanet LIGHT Max Planck Institute NYU PNAS Princeton Pulsating Solar Decathlon Space brown dwarf

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>