Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Lander Explores Site By Trenching

21.08.2008
NASA's Phoenix Mars Lander scientists and engineers are continuing to dig into the area around the lander with the spacecraft's robotic arm, looking for new materials to analyze and examining the soil and ice subsurface structure.

New trenches opened recently include the "Burn Alive 3" trench in the "Wonderland" digging area in the eastern portion of the arm's reachable workspace. Researchers choose such names informally to aid discussion.

The team is excavating one side of Burn Alive 3 down to the ice layer and plans to leave about 1 centimeter (0.4 inch) of soil above the ice on the other side. This intermediate depth, located a couple centimeters (0.8 inch) above the Martian ice-soil boundary, gives the science team the vertical profile desired for a sample dubbed "Burning Coals," intended to be the next material delivered to Phoenix's Thermal and Evolved Gas Analyzer (TEGA).

The surface of the ground throughout the arctic plain where Phoenix landed is patterned in polygon shapes like those of permafrost areas on Earth, where the ground goes through cycles of swelling and shrinking. Some of the recent and planned digging by Phoenix takes advantage of landing within arm's reach both of the centers of polygons and the troughs between polygons. For example, the "Stone Soup" trench has been dug in a trough in the "Cupboard" excavation area, near the western end of the arm's workspace. The team plans to dig in this zone as deep as possible to study properties of the soil and ice deep in a polygon trough.

A sample from the Cupboard area may be delivered to the lander's wet chemistry lab, part of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The location for obtaining a sample would depend on results from further digging in "Upper Cupboard," and use of the thermal and electrical conductivity probe on the arm, inserted into icy soil within Upper Cupboard to test for the presence of salts.

In addition, Phoenix's robotic arm would acquire ice-rich soil from "Upper Cupboard" and observe the material in the arm's scoop to determine whether the sample sublimates. Melting is an indication of the presence of salt. If the sample melts and leaves behind a salty deposit, "Upper Cupboard" would be the location for the next sample for the wet chemistry lab. If no salts are detected, the team would continue with plans to use the "Stone Soup" trench for acquiring the next wet chemistry lab sample.

"We expect to use the robotic arm heavily over the next several weeks, delivering samples to our instruments and examining trench floors and walls to continue to search for evidence of lateral and vertical variations in soil and ice structures," said Ray Arvidson, Phoenix's "dig czar," from Washington University in St. Louis.

The Phoenix science and engineering teams have transitioned to "Earth time," with the teams working a parallel daytime shift not tied to the current time on Mars. Daily activities are being planned for the spacecraft as the lander performs activities that were sent up the previous day. Digging and documenting are done on alternate days to allow the science team time to analyze data and adjust activities accordingly.

In upcoming sols, the team plans to scrape the "Snow White" trench and experiment with acquiring and holding samples in the shade versus the sun. They want to find out if prolonged exposure to sunlight causes the acquired material to stick to the scoop, as has occurred with previous samples.

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:

Guy Webster, NASA Jet Propulsion Lab
818-354-5011 guy.webster@jpl.nasa.gov
Dwayne Brown, NASA Headquarters, Washington
202-358-1726 dwayne.c.brown@nasa.gov
Sara Hammond, University of Arizona
520-626-4402 shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Burn Alive 3 Burning Coals Mars NASA PHOENIX spacecraft's robotic arm

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>