Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Telescopes Find Clear Skies and Water Vapor on Exo-Neptune

26.09.2014

Astronomers using data from three of NASA's space telescopes -- Hubble, Spitzer, and Kepler -- have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest for which molecules of any kind have been detected.

"The discovery is a significant milepost on the road to eventually analyzing the atmospheric composition of smaller, rocky planets more like Earth," said John Grunsfeld, assistant administrator of NASA's Science Mission Directorate in Washington. "Such achievements are only possible today with the combined capabilities of these unique and powerful observatories."


Illustration Credit: NASA, ESA, and R. Hurt (JPL-Caltech)

A Sunny Outlook for 'Weather' on Exoplanets. Scientists were excited to discover clear skies on a relatively small planet, about the size of Neptune, using the combined power of NASA's Hubble, Spitzer, and Kepler space telescopes. The view from this planet -- were it possible to fly a spaceship into its gaseous layers -- is illustrated at right. Before now, all of the planets observed in this size range had been found to have high cloud layers that blocked the ability to detect molecules in the planet's atmosphere (illustrated at left). The clear planet, called HAT-P-11b, is gaseous with a rocky core, much like our own Neptune. Its atmosphere may have clouds deeper down, but the new observations show that the upper region is cloud-free. This good visibility enabled scientists to detect water vapor molecules in the planet's atmosphere.

Clouds in the atmospheres of planets can block the view to underlying molecules that reveal information about the planets' compositions and histories. Finding clear skies on a Neptune-size planet is a good sign that smaller planets might have similarly good visibility.

"When astronomers go observing at night with telescopes, they say 'clear skies' to mean good luck," said Jonathan Fraine of the University of Maryland, College Park, lead author of a new study appearing in Nature. "In this case, we found clear skies on a distant planet. That's lucky for us because it means clouds didn't block our view of water molecules."

The planet, HAT-P-11b, is a so-called exo-Neptune -- a Neptune-size planet that orbits another star. It is located 120 light-years away in the constellation Cygnus. Unlike our Neptune, this planet orbits closer to its star, making one lap roughly every five days. It is a warm world thought to have a rocky core and gaseous atmosphere. Not much else was known about the composition of the planet,or other exo-Neptunes like it, until now.

Part of the challenge in analyzing the atmospheres of planets like this is their size. Larger, Jupiter-like planets are easier to see because of their impressive girth and relatively puffy atmospheres. In fact, researchers have already been able to detect water vapor in those planets. Smaller planets are more difficult to probe, and what's more, the ones observed to date all appeared to be cloudy.

In the new study, astronomers set out to look at the atmosphere of HAT-P-11b, not knowing if its weather would call for clouds or not. They used Hubble's Wide Field Camera 3, and a technique called transmission spectroscopy, in which a planet is observed as it crosses in front of its parent star. Starlight filters through the rim of the planet's atmosphere and into a telescope's lens. If molecules like water vapor are present, they absorb some of the starlight, leaving distinct signatures in the light that reaches our telescopes.

Using this strategy, Hubble was able to detect water vapor in HAT-P-11b. This technique indicates the planet did not have clouds blocking the view, a hopeful sign that more cloudless planets can be located and analyzed in the future.

But before the team could celebrate clear skies on the exo-Neptune, they had to show that starspots -- cooler "freckles" on the face of stars -- were not the real sources of water vapor. Cool starspots on the parent star can contain water vapor that might appear erroneously to be from the planet. That's when the team turned to Kepler and Spitzer. Kepler had been observing one patch of sky for years, and HAT-P-11b happens to lie in the field. Those visible-light data were combined with targeted Spitzer observations taken at infrared wavelengths. By comparing these observations, the astronomers figured out that the starspots were too hot to have any steam.

It was at that point the team could celebrate detecting water vapor on a world unlike any in our solar system. "We think that exo-Neptunes may have diverse compositions, which reflect their formation histories," said Heather Knutson of the California Institute of Technology, Pasadena, co-author of the new study. "Now with data like these, we can begin to piece together a narrative for the origin of these distant worlds."

The results from all three telescopes demonstrate that HAT-P-11b is blanketed in water vapor, hydrogen gas, and likely other yet-to-be-identified molecules. Theorists will be drawing up new models to explain the planet's makeup and origins.

"We are working our way down the line, from hot Jupiters to exo-Neptunes," said Drake Deming, a co-author of the study also from University of Maryland, College Park. "We want to expand our knowledge to a diverse range of exoplanets."

The astronomers plan to examine more exo-Neptunes in the future, and hope to apply the same method to smaller super-Earths -- the massive, rocky cousins to our home world with up to 10 times the mass. Our solar system doesn't have a super-Earth, but NASA's Kepler mission is finding them around other stars in droves. NASA's James Webb Space Telescope, scheduled to launch in 2018, will search super-Earths for signs of water vapor and other molecules; however, finding signs of oceans and potentially habitable worlds is likely a ways off.

"The work we are doing now is important for future studies of super-Earths and even smaller planets, because we want to be able to pick out in advance the planets with clear atmospheres that will let us detect molecules," said Knutson.

Once again, astronomers will be crossing their fingers for clear skies.

More information about this study, Hubble, Kepler and Spitzer is online at:

http://hubblesite.org/news/2014/42

http://www.nasa.gov/

http://www.spacetelescope.org/heic1420/

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

Contact Information

Ray Villard
News Chief
villard@stsci.edu
Phone: 410-338-4514

Ray Villard | newswise

Further reports about: Atmosphere Hubble Kepler NASA STScI Skies Space Telescope Telescope Telescopes Water clouds water vapor

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>