Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the nanoworld

05.09.2018

A worldwide study involving 20 laboratories has established and standardized a method to measure exact distances within individual biomolecules, down to the scale of one millionth of the width of a human hair.

The new method represents a major improvement of a technology called single-molecule FRET (Förster Resonance Energy Transfer), in which the movement and interaction of fluorescently labelled molecules can be monitored in real time even in living cells.


Researchers from around the world established a benchmark for the FRET technology by measuring distances within DNA molecules with sub-nanometer precision.

Source: Hugo Sanabria, Nandakumar Chedikulathu Vishnu/Universität Clemson

So far, the technology has mainly been used to report changes in relative distances - for instance, whether the molecules moved closer together or farther apart. Prof. Dr. Thorsten Hugel of the Institute of Physical Chemistry and the BIOSS Centre for Biological Signalling Studies is one of the lead scientists of the study, which was recently published in Nature Methods.

FRET works similarly to proximity sensors in cars: the closer the object is, the louder or more frequent the beeps become. Instead of relying on acoustics, FRET is based on proximity-dependent changes in the fluorescent light emitted from two dyes and is detected by sensitive microscopes.

The technology has revolutionised the analysis of the movement and interactions of biomolecules in living cells.

Hugel and colleagues envisioned that once a FRET standard had been established, unknown distances could be determined with high confidence. By working together, the 20 laboratories involved in the study refined the method in such a way that scientists using different microscopes and analysis software obtained the same distances, even in the sub-nanometer range.

"The absolute distance information that can be acquired with this method now enables us to accurately assign conformations in dynamic biomolecules, or even to determine their structures", says Thorsten Hugel, who headed the study together with Dr. Tim Craggs (University of Sheffield/Great-Britain), Prof. Dr. Claus Seidel (University of Düsseldorf) and Prof. Dr. Jens Michaelis (University of Ulm). Such dynamic structural information will yield a better understanding of the molecular machines and processes that are the basis of life.

###

Original publication:

Björn Hellenkamp, Sonja Schmid, et int., Jens Michaelis, Claus A. M. Seidel, Timothy D. Craggs, Thorsten Hugel. Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study. In: Nature Methods DOI: 10.1038/s41592-018-0085-0

Prof. Dr. Thorsten Hugel | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41592-018-0085-0

Further reports about: FRET analysis software biomolecules fluorescent light living cells nanoworld

More articles from Physics and Astronomy:

nachricht Ultracold atoms used to verify 1963 prediction about 1D electrons
05.09.2018 | Rice University

nachricht 2D atomic crystals probe: how hot it is in a plasmonic 'hotspot'
05.09.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tilted pulses

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing...

Im Focus: Digital Twin meets Plug & Produce – Fraunhofer IPK at the IMTS in Chicago

Hannover Messe is expanding to the USA – and Fraunhofer IPK is joining in with a trendsetting exhibit. It combines fast and flexible design and application of the shopfloor IT with a digital twin, which ensures transparency even in complex production systems.

For the first time ever, Deutsche Messe organizes a Hannover Messe brand event outside of Germany – and Fraunhofer IPK is taking part.

Im Focus: Watching atoms and electrons at work

Kiel layered crystals are used worldwide as a basis for exploring the nano-cosmos

The properties of materials are determined by their atomic structure. If atoms and electrons change their positions, then the characteristics of a material...

Im Focus: How a NASA scientist looks in the depths of the Great Red Spot to find water on Jupiter

For centuries, scientists have worked to understand the makeup of Jupiter. It's no wonder: this mysterious planet is the biggest one in our solar system by far, and chemically, the closest relative to the Sun. Understanding Jupiter is a key to learning more about how our solar system formed, and even about how other solar systems develop.

But one critical question has bedeviled astronomers for generations: Is there water deep in Jupiter's atmosphere, and if so, how much?

Im Focus: A novel nanoactuator system has been developed

Researchers at University of Jyväskylä (Finland) and University of Tampere (Finland) together with BioNavis Ltd (Finland) have developed a novel nanoactuator system, where conformation of biomolecule can be tuned by electric field and probed using optical properties of gold nanoparticle.

Over the past decades, nanoactuators for detection or probing of different biomolecules have attracted vast interest for example in the fields of biomedical,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Methane to syngas catalyst: two for the price of one

05.09.2018 | Materials Sciences

A Step Ahead in Pharmaceutical Research

05.09.2018 | Life Sciences

IAA Commercial Vehicles 2018: 3D metal printer enables more efficient and lighter components

05.09.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>