Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-distance relationships of particles: Electron-hole pairs in two-dimensional crystals

03.05.2018

Researchers of TU Dresden reveal the nature of optical excitations in two-dimensional crystals within an international collaboration

When light of specific frequency hits a semiconductor crystal, it is absorbed and produces a excitation, a state of higher energy. In solar cells, this energy can be converted into electricity and used. In two-dimensional crystals, which consist of only a few atomic layers, so called “excitons” are the protagonists of these processes: These excitations from light incidence consist of one particle of positive charge and one of negative charge.


A two-dimensional crystal from molybdenum disulfide (MoS2) and Tungsten diselenide (WSe2) (left: top view, right: side view).

Jens Kunstmann

Yet, two-dimensional crystals host a sheer zoo of excitons, making it hard to tell the kind of excitons dealt with in specific situations. Researchers of TU Dresden, in collaboration with an international team, now identified the nature of interlayer excitons in two-dimensional crystals. Their findings were published in the journal Nature Physics.

The two-dimensional crystals are a kind of “sandwich” made of single layers of molybdenum disulfide and tungsten diselenide. Each layer has a thickness of only three atoms. In the laboratory, the layers are stacked on each other one by one by hand. “What makes interlayer excitons so special is the two charged particles being separated in space. So far, it was assumed that the positive one is located in the Tungsten diselenide and the negative one in the molybdenum disulfide,” says Dr. Jens Kunstmann from the Chair of Theoretical Chemistry of TU Dresden.

“We were now able to clearly show that particles of positive charge can be found in both layers, and thence, the interlayer excitons are bound to each other in a much stronger way than presumed formerly.” Theoretical as well as experimental groups were working hand in hand in the course of this global collaboration.

The Dresden group contributed theoretical calculations and analyses in cooperation with Prof. Andrey Chaves of the Universidade Federal do Ceará in Fortaleza, Brazil, and Prof. David R. Reichman of the renowned Columbia University in New York City, USA. The experiments were conducted by the group of Prof. Tobias Korn of the Universität Regensburg: among them Fabian Mooshammer and Philipp Nagler, who contributed to this research in the course of their master and doctoral theses.

“We are still at the beginning, we still don’t know for sure how interlayer excitons in other two-dimensional crystals look like,” Dr. Kunstmann points out. “But we are fascinated by these excitons anyway. The spatial separation of the charges could enable the condensation of excitons to a macroscopic quantum state, as well as the construction of highly efficient solar cells.”

Complete picture caption: A two-dimensional crystal from molybdenum disulfide (MoS2) and Tungsten diselenide (WSe2) (left: top view, right: side view). Light can produce interlayer excitons in these crystals, which are fascinating excited states, consisting of one particle of positive charge and one of negative charge. The coloured outlines in the right picture represent the probability of the particles‘ places.

Media inquiries:
Dr. Jens Kunstmann
Chair of Theoretical Chemistry, TU Dresden
Tel.: +49 (0) 351 463-33635
E-Mail: jens.kunstmann@tu-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-dresden.de

More articles from Physics and Astronomy:

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

nachricht Creating miracles with polymeric fibers
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>