Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium -- it's not just for batteries: It can also reduce instabilities in fusion plasmas

07.02.2018

You may be most familiar with the element lithium as an integral component of your smart phone's battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

The results, demonstrated by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators on China's Experimental Advanced Superconducting Tokamak (EAST) found that lithium powder can eliminate instabilities known as edge-localized modes (ELMs) when used to coat a tungsten plasma-facing component called the "divertor" -- the unit that exhausts waste heat and particles from plasma that fuels fusion reactions. If left alone, such instabilities can damage the divertor and cause fusion reactions to fizzle.


Figure showing the location of the two lithium injectors, as well as color images of plasma before and after lithium injection. Red indicates light emitted from both deuterium and lithium, while yellow and orange show lithium line emission.

Credit: Rajesh Maingi

The results are good news for future devices that plan to use tungsten for their own divertors that are designed to work with lithium.

Past experiments with lithium powder on EAST have confirmed the metal's ability to eliminate or reduce the frequency and intensity of periodic bursts of ELMs that occur in the outer edge of plasmas that can damage the divertor.

ELMs develop regularly when the plasma enters a high-energy state known as high-confinement mode, or H-mode, which holds heat within the plasma more efficiently. ELMs can also unleash large amounts of heat that damage the plasma-facing components and release eroded material that can enter the plasma and cool the fusion reactions.

During the past experiments, EAST's upper and lower divertors were coated with light and porous carbon rather than the heavy metal tungsten. "So, the question was whether lithium will have the same effect on tungsten walls as it does with carbon walls," said PPPL physicist Rajesh Maingi, lead author with Jiansheng Hu of the Institute of Plasma Physics at the Chinese Academy of Sciences (ASIPP) of a paper describing the results in the journal Nuclear Fusion.

The issue was in question because recent research on other doughnut-shaped tokamaks, such as the Axi-Symmetric Divertor Experiment-Upgrade (ASDEX-U) in Germany, have suggested that plasma-facing components made of tungsten actually reduce the ability of lithium coatings to control ELMs. Lithium was injected into ASDEX-U via large fast pellets, as compared with the lithium powder that was gravitationally injected into the EAST experiments.

In the recent experiments, researchers manipulated the plasma within EAST so that it exhausted its waste heat on the upper of the two divertors within the tokamak. Unlike the lower divertor, which was made of carbon, the upper divertor is fabricated from tungsten.

The results showed that lithium injected into plasma in contact with tungsten reduces ELMs just as much as lithium does when the plasma exhausts its heat on carbon. Physicists now have increased confidence that the techniques used to reduce ELMs in current fusion machines will be able to reduce ELMs in larger machines in the future, as long as they are designed to be compatible with lithium.

The research team noted that it became easier to eliminate ELMs as the experiments progressed, suggesting that elimination could require less lithium as time went on. Scientists would therefore like to find a way to regulate how much lithium is injected into the plasma, perhaps reducing the injection rate once the ELMs have disappeared to control the lithium inventory and optimize the performance of the plasma.

###

This research was funded by the DOE Office of Science together with the National Key Research and Development Program of China, the National Nature Science Foundation of China, and the National Magnetic Confinement Fusion Science Program of China. The team included scientists from PPPL, ASIPP, Johns Hopkins University, the Department of Applied Physics in China's Hunan University, Oak Ridge National Laboratory, and General Atomics.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Media Contact

Raphael Rosen
rrosen@pppl.gov
609-243-3317

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!
Further information:
https://www.pppl.gov/news/2018/02/lithium-%E2%80%94-it%E2%80%99s-not-just-batteries-powdered-metal-can-reduce-instabilities-fusion
http://dx.doi.org/10.1088/1741-4326/aa9e3f

Further reports about: Laboratory Lithium Plasma batteries fusion plasmas fusion reactions physics

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>