Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HADES experiment simulates colliding and merging neutron stars Temperatures of 800 billion degrees in the cosmic kitchen

22.08.2019

It is among the most spectacular events in the universe: a merger of neutron stars. An international team of researchers with strong representation from the Technical University of Munich (TUM) has completed the first laboratory measurements of thermal electromagnetic radiation arising in such collisions. The resulting data enabled them to calculate the prevailing temperature when such stars merge.

When two neutron stars collide, the matter at their core enters extreme states. An international research team has now studied the properties of matter compressed in such collisions.


Illustration of two merging neutron stars. Gravitational waves travel out from the collision, seconds later a burst of gamma rays is shot out. The merging stars eject swirling clouds of material.

Image: National Science Foundation/LIGO/Sonoma State University / A. Simonnet

The HADES long-term experiment, involving more than 110 scientists, has been investigating forms of cosmic matter since 1994.

With the investigation of electromagnetic radiation arising when stars collide, the team has now focused attention on the hot, dense interaction zone between two merging neutron stars.

Simulation of electromagnetic radiation

Collisions between stars cannot be directly observed – not least of all because of their extreme rarity. According to estimates, none has ever happened in our galaxy, the Milky Way. The densities and temperatures in merging processes of neutron stars are similar to those occurring in heavy ion collisions, however.

This enabled the HADES team to simulate the conditions in merging stars at the microscopic level in the heavy ion accelerator at the Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt.

As in a neutron star collision, when two heavy ions are slammed together at close to the speed of light, electromagnetic radiation is produced. It takes the form of virtual photons that turn back into real particles after a very short time. However, the virtual photons occur very rarely in experiments using heavy ions.

"We had to record and analyze about 3 billion collisions to finally reconstruct 20,000 measurable virtual photons," says Dr. Jürgen Friese, the former spokesman of the HADES collaboration and researcher at Laura Fabbietti’s Professorship on Dense and Strange Hadronic Matter at TUM.

Photon camera shows collision zone

To detect the rare and transient virtual photons, researchers at TUM developed a special 1.5 square meter digital camera. This instrument records the Cherenkov effect: the name given to certain light patterns generated by decay products of the virtual photons.

"Unfortunately the light emitted by the virtual photons is extremely weak. So the trick in our experiment was to find the light patterns," says Friese.

"They could never be seen with the naked eye. We therefore developed a pattern recognition technique in which a 30,000 pixel photo is rastered in a few microseconds using electronic masks. That method is complemented with neural networks and artificial intelligence."

Observing the material properties in the laboratory

The reconstruction of thermal radiation from compressed matter is a milestone in the understanding of cosmic forms of matter. It enabled the scientists to place the temperature of the new system resulting from the merger of stars at 800 billion degrees celsius. As a result, the HADES team was able to show that the merging processes under consideration are in fact the cosmic kitchens for the fusion of heavy nucleii.

Further information:

The HADES project is making it possible to collect data on strange particles believed to exist only in the core of neutron stars. With their study of strangeness in particles, Prof. Fabbietti's team is helping to lay the foundation for realistic models of neutron stars.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Laura Fabbietti
Technical University of Munich
Professor for Dense and Strange Hadronic Matter
Tel.: +49 (0) 89 289-12433
laura.fabbietti@ph.tum.de

Dr. Jürgen Friese
Technical University of Munich
Professor for Dense and Strange Hadronic Matter
Tel.: +49 (0) 89 289-12441
juergen.friese@ph.tum.de

Originalpublikation:

The HADES-Collaboration: Probing dense baryon-rich matter with virtual photons. In: Nature Physics (published on July 29, 2019).
DOI: 10.1038/s41567-019-0583-8
https://doi.org/10.1038/s41567-019-0583-8

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35655/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

More articles from Physics and Astronomy:

nachricht NTU Singapore scientists develop technique to observe radiation damage over femtoseconds
19.09.2019 | Nanyang Technological University

nachricht UMD-led study captures six galaxies undergoing sudden, dramatic transitions
19.09.2019 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>