Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic state of matter: An atom full of atoms

26.02.2018

Scientists from TU Wien (Vienna, Austria) and the USA have provided proof for a new state of matter: an electron orbits a nucleus at a great distance, while many other atoms are bound inside the orbit.

What is inside an atom, between the nucleus and the electron? Usually there is nothing, but why could there not be other particles too? If the electron orbits the nucleus at a great distance, there is plenty of space in between for other atoms. A "giant atom" can be created, filled with ordinary atoms. All these atoms form a weak bond, creating a new, exotic state of matter at cold temperatures, referred to as "Rydberg polarons".


The electron (blue) orbits the nucleus (red) -- and its orbit encloses many other atoms of the Bose-Einstein-condensate (green).

Credit: TU Wien

A team of researchers has now presented this state of matter in the journal Physical Review Letters. The theoretical work was done at TU Wien (Vienna) and Harvard University, the experiment was performed at Rice University in Houston (Texas).

Ultracold Physics

Two very special fields of atomic physics, which can only be studied at extreme conditions, have been combined in this research project: Bose-Einstein condensates and Rydberg atoms. A Bose-Einstein condensate is a state of matter created by atoms at ultracold temperatures, close to absolute zero. Rydberg atoms are atoms, in which one single electron is lifted into a highly excited state and orbits the nucleus at a very large distance.

"The average distance between the electron and its nucleus can be as large as several hundred nanometres - that is more than a thousand times the radius of a hydrogen atom", says Professor Joachim Burgdörfer. Together with Prof. Shuhei Yoshida (both TU Wien, Vienna), he has been studying the properties of such Rydberg atoms for years. The idea for the new research project was developed in their long-standing cooperation with Rice University in Houston.

First, a Bose-Einstein condensate was created with strontium atoms. Using a laser, energy was transferred to one of these atoms, turning it into a Rydberg atom with a huge atomic radius. The perplexing thing about this atom: the radius of the orbit, on which the electron moves around the nucleus, is much larger than the typical distance between two atoms in the condensate. Therefore the electron does not only orbit its own atomic nucleus, numerous other atoms lie inside its orbit too. Depending on the radius of the Rydberg atom and the density of the Bose-Einstein condensate, as many as 170 additional strontium atoms may be enclosed by the huge electronic orbit.

Neutral Atoms do not Disturb the Electron's Orbit

These atoms hardly have an influence on this Rydberg electron's path. "The atoms do not carry any electric charge, therefore they only exert a minimal force on the electron", says Shuhei Yoshida. But to a very small degree, the electron still feels the presence of the neutral atoms along its path. It is scattered at the neutral atoms, but only very slightly, without ever leaving its orbit. The quantum physics of slow electrons permits this kind of scattering, which does not transfer the electron into a different state.

As computer simulations show, this comparatively weak kind of interaction decreases the total energy of the system, and so a bond between the Rydberg atom and the other atoms inside the electronic orbit is created. "It is a highly unusual situation", says Shuhei Yoshida. "Normally, we are dealing with charged nuclei, binding electrons around them. Here, we have an electron, binding neutral atoms."

This bond is much weaker than the bond between atoms in a crystal. Therefore, this exotic state of matter, called Rydberg polarons, can only be detected at very low temperatures. If the particles were moving any faster, the bond would break. "For us, this new, weakly bound state of matter is an exciting new possibility of investigating the physics of ultracold atoms", says Joachim Burgdörfer. "That way one can probe the properties of a Bose-Einstein condensate on very small scales with very high precision."

###

Contact:

Prof. Joachim Burgdörfer Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13610
burg@concord.itp.tuwien.ac.at

Media Contact

Florian Aigner
florian.aigner@tuwien.ac.at
0043-155-801-41027

 @tuvienna

http://www.tuwien.ac.at/tu_vienna/ 

Florian Aigner | EurekAlert!

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>