Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical element potassium detected in an exoplanet atmosphere

04.09.2019

A team of astronomers led by AIP PhD student Engin Keles detected the chemical element potassium in the atmosphere of an exoplanet, for the first time with overwhelming significance and applying high-resolution spectroscopy. The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona was used to study the atmosphere on the Jupiter-like exoplanet HD189733b.

Ever since the earliest theoretical predictions 20 years ago, the chemical elements potassium and sodium were expected to be detectable in atmospheres of “hot Jupiters”, gaseous planets with temperatures of a few thousand Kelvin that orbit closely around far-away stars.


Artist’s impression of a hot Jupiter (right) and its cool host star.

AIP/Kristin Riebe


Potassium detection in HD189733b. The figure depicts the excess absorption in the potassium line in the exoplanet’s atmosphere during transit.

AIP/Engin Keles, Kristin Riebe

While sodium was detected with high resolution observations already early on, potassium was not, which created a puzzle for atmospheric chemistry and physics.

The elements can be discovered by analyzing the home star’s spectrum of light when the planet passes in front of it as seen from Earth. Different elements cause specific absorption signals in the spectrum, dark lines, that hint at the chemical composition of the atmosphere.

However, the presence of clouds in hot Jupiter atmospheres strongly weakens any spectral absorption features and thus makes them very hard to detect. Even for HD189733b, the best studied hot Jupiter, so far scientists only possessed a very vague and imprecise knowledge of the potassium absorption.

The exoplanet, 64 light years away and about the size of Jupiter, orbits its home star – a red giant ¬– in 53 hours and is 30 times closer to it than the Earth to the Sun. It needed the light gathering capability of the 2x8,4m LBT and the high spectral resolution of PEPSI to definitely measure potassium for the first time at high resolution in atmospheric layers above the clouds.

With these new measurements, researchers can now compare the absorption signals of potassium and sodium and thus learn more about processes such as condensation or photo-ionization in these exoplanet atmospheres.

The technique that was applied for this study at LBT is called transmission spectroscopy. It requires that the exoplanet transits in front of the host star. “We took a time series of light spectra during the transit and compared the absorption depth,” says the lead author of the study, Engin Keles, PhD student at AIP in the group Stellar Physics and Exoplanets.

“During transit, we then detected the potassium signature, which disappeared before and after transit as expected, which indicates that the absorption is induced by the planetary atmosphere.” Investigations by other teams already attempted to detect potassium on the same exoplanet, however, either nothing was found or what was found was too weak to be statistically significant. Until now there has been no significant detection of potassium in high resolution observations for any exoplanet.

“Our observations clearly made the breakthrough” emphasizes project co-leader Dr. Matthias Mallonn, who is seconded by PEPSI’s principal investigator Prof. Klaus Strassmeier: “PEPSI is well suited for this task because of its high spectral resolution that allows collecting more photons per pixel from very narrow spectral lines than any other telescope-spectrograph combination.”

“Both as a spectrograph and as a spectropolarimeter, PEPSI has already made significant contributions to stellar physics,” adds Christian Veillet, LBT Observatory's Director. “This strong detection of potassium in the atmosphere of an exoplanet establishes PEPSI as an amazing tool for exoplanet characterization as well as a unique asset for the members of the LBT community.” The team included colleagues from Denmark, The Netherlands, Switzerland, Italy and the United States and has now presented the results in the journal Monthly Notices of the Royal Astronomical Society.

Wissenschaftliche Ansprechpartner:

Engin Keles, 0331-7499-538, ekeles@aip.de
Prof. Dr. Klaus G. Strassmeier, 0331-7499-223, kstrassmeier@aip.de

Originalpublikation:

Engin Keles, Matthias Mallonn, Carolina von Essen, Thorsten A. Carroll, Xanthippi Alexoudi, Lorenzo Pino, Ilya Ilyin, Katja Poppenhäger, Daniel Kitzmann, Valerio Nascimbeni, Jake D. Turner, Klaus G. Strassmeier (2019), MNRAS, “The potassium absorption on HD189733b and HD209458b”
https://doi.org/10.1093/mnrasl/slz123

Weitere Informationen:

http://lbtonews.blogspot.com/
https://pepsi.aip.de/
https://cloud.aip.de/index.php/s/7mPMqKazbWkGcks

Dr. Janine Fohlmeister | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Heavy-electron quantum criticality and single-particle spectroscopy
02.04.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Most of Earth's carbon was hidden in the core during its formative years

02.04.2020 | Earth Sciences

Discovery of life in solid rock deep beneath sea may inspire new search for life on Mars

02.04.2020 | Life Sciences

Geneticists are bringing personal medicine closer to recently admixed individuals

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>