Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many bodies make 1 coherent burst of light

31.01.2012
Rice University researchers first to see superfluorescence from solid-state material

In a flash, the world changed for Tim Noe – and for physicists who study what they call many-body problems.

The Rice University graduate student was the first to see, in the summer of 2010, proof of a theory that solid-state materials are capable of producing an effect known as superfluorescence.

That can only happen when "many bodies" – in this case, electron-hole pairs created in a semiconductor – decide to cooperate.

Noe, a student of Rice physicist Junichiro Kono, and their research team used high-intensity laser pulses, a strong magnetic field and very cold temperatures to create the conditions for superfluorescence in a stack of 15 undoped quantum wells. The wells were made of indium, gallium and arsenic and separated by barriers of gallium-arsenide (GaAs). The researchers' results were reported this week in the journal Nature Physics.

Noe spent weeks at the only facility with the right combination of gear to carry out such an experiment, the National High Magnetic Field Laboratory at Florida State University. There, he placed the device in an ultracold (as low as 5 kelvins) chamber, pumped up the magnetic field (which effectively makes the "many body" particles – the electron-hole pairs – more sensitive and controllable) and fired a strong laser pulse at the array.

"When you shine light on a semiconductor with a photon energy larger than the band gap, you can create electrons in the conduction band and holes in the valence band. They become conducting," said Kono, a Rice professor of electrical and computer engineering and in physics and astronomy. "The electrons and holes recombine – which means they disappear – and emit light. One electron-hole pair disappears and one photon comes out. This process is called photoluminescence."

The Rice experiment acted just that way, but pumping strong laser light into the layers created a cascade among the quantum wells. "What Tim discovered is that in these extreme conditions, with an intense pulse of light on the order of 100 femtoseconds (quadrillionths of a second), you create many, many electron-hole pairs. Then you wait for hundreds of picoseconds (mere trillionths of a second) and a very strong pulse comes out," Kono said.

In the quantum world, that's a long gap. Noe attributes that "interminable" wait of trillionths of a second to the process going on inside the quantum wells. There, the 8-nanometer-thick layers soaked up energy from the laser as it bored in and created what the researchers called a magneto-plasma, a state consisting of a large number of electron-hole pairs. These initially incoherent pairs suddenly line up with each other.

"We're pumping (light) to where absorption's only occurring in the GaAs layers," Noe said. "Then these electrons and holes fall into the well, and the light hits another GaAs layer and another well, and so on. The stack just increases the amount of light that's absorbed." The electrons and holes undergo many scattering processes that leave them in the wells with no coherence, he said. But as a result of the exchange of photons from spontaneous emission, a large, macroscopic coherence develops.

Like a capacitor in an electrical circuit, the wells become saturated and, as the researchers wrote, "decay abruptly" and release the stored charge as a giant pulse of coherent radiation.

"What's unique about this is the delay time between when we create the population of electron-hole pairs and when the burst happens. Macroscopic coherence builds up spontaneously during this delay," Noe said.

Kono said the basic phenomenon of superfluorescence has been seen for years in molecular and atomic gases but wasn't sought in a solid-state material until recently. The researchers now feel such superfluorescence can be fine-tuned. "Eventually we want to observe the same phenomenon at room temperature, and at much lower magnetic fields, maybe even without a magnetic field," he said.

Even better, Kono said, it may be possible to create superfluorescent pulses with any desired wavelength in solid-state materials, powered by electrical rather than light energy.

The researchers said they expect the paper to draw serious interest from their peers in a variety of disciplines, including condensed matter physics; quantum optics; atomic, molecular and optical physics; semiconductor optoelectronics; quantum information science; and materials science and engineering.

There's much work to be done, Kono said. "There are several puzzles that we don't understand," he said. "One thing is a spectral shift over time: The wavelength of the burst is actually changing as a function of time when it comes out. It's very weird, and that has never been seen."

Noe also observed superfluorescent emission with several distinct peaks in the time domain, another mystery to be investigated.

The paper's co-authors include Rice postdoctoral researcher Ji-Hee Kim; former graduate student Jinho Lee and Professor David Reitze of the University of Florida, Gainesville; researchers Yongrui Wang and Aleksander Wojcik and Professor Alexey Belyanin of Texas A&M University; and Stephen McGill, an assistant scholar and scientist at the National High Magnetic Field Laboratory at Florida State University, Tallahassee.

Support for the research came from the National Science Foundation, with support for work at the National High Magnetic Field Laboratory from the state of Florida.

Read the abstract at http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys2207.html

Images for download:

media.rice.edu/images/media/NewsRels/0127_KONO.JPG

Rice University researchers have confirmed a long-held theory that solid-state materials are capable of producing an effect known as superfluorescence. From left: Rice physicist Junichiro Kono, postdoctoral researcher Ji-Hee Kim and graduate student Tim Noe. (Credit: Jeff Fitlow/Rice University)

media.rice.edu/images/media/NewsRels/0130_figfs.jpg

Pumping laser pulses into a stack of quantum wells created an effect physicists had long sought but not seen until now: superfluorescence in a solid-state material. The Rice University lab of physicist Junichiro Kono reported the results in Nature Physics. (Credit: Tim Noe/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht The magic wavelength of cadmium
16.09.2019 | University of Tokyo

nachricht Tomorrow´s coolants of choice
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>