Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers pierce galactic clouds to shine light on black hole development

20.06.2014

International team helps explain how black hole outflows affect structure formation in universe

An international team of scientists including a Virginia Tech physicist have discovered that winds blowing from a supermassive black hole in a nearby galaxy work to obscure observations and x-rays.


This is an illustration of the physical, spatial and temporal picture for the outflows emanating from the vicinity of the super massive black hole in the galaxy NGC 5548. The behavior of the emission source in five epochs is shown along the time axis. The obscurer is situated at roughly 0.03 light years (0.01 parsecs) from the emission source and is only seen in 2011 and 2013 (it is much stronger in 2013). Outflow component 1 shows the most dramatic changes in its absorption troughs. Different observed ionic species are represented as colored zones within the absorbers.

Credit: Ann Feild/Space Telescope Science Institute

The discovery in today's (June 19, 2004) issue of Science Express sheds light on the unexpected behavior of black holes, which emit large amounts of matter through powerful, galactic winds.

Using a large array of satellites and space observatories, the team spent more than a year training their instruments on the brightest and most studied of the "local" black holes — the one situated at the core of Type I Seyfert Galaxy NGC 5548.

What they found was a bit of a surprise.

The researchers discovered much colder gas than expected based on past observations, showing that the wind had cooled and that a stream of gas moved quickly outward and blocked 90 percent of x-rays. The observation was the first direct evidence of an obscuration process that — in more luminous galaxies — has been shown to regulate growth of black holes.

By looking at data from different sources, scientists found that a thick layer of gas lay between the galactic nucleus and the Earth blocked the lower energy x-rays often used to study the system, but allowed more energetic x-rays to get through.

Data from Hubble Space Telescope also showed ultraviolet emissions being partially absorbed by a stream of gas.

A multi-wavelength observational campaign simultaneously looking at an object to decipher its secrets is rare, the researchers said.

"I don't think anyone has trained so many scopes and put in so much time on a single object like this," said Nahum Arav, an associate professor of physics with Virginia Tech's College of Science. "The result is quite spectacular. We saw something that was never studied well before and we also deciphered the outflow in the object. We know far more about this outflow than any studied previously as to where it is and how it behaves in time. We have a physical model that explains all the data we've taken of the outflow over 16 years."

The discovery was made by an international team led by SRON Netherlands Institute for Space Research scientist Jelle Kaastra using the major space observatories of the European Space Agency, NASA, the Hubble Space Telescope, Swift, NuSTAR, Chandra, INTREGRAL, and other satellites and observation platforms.

"These outflows are thought to be a major player in the structure formation of the universe," Arav said "This particular outflow is comparatively small but because it's so close we can study it very well and then create a better understanding of how the phenomenon will work in very large objects that do affect the structure formation in the universe."

"Shadowing" of light from a black hole had not been seen before. With the discovery, scientists were able to decipher the outflow.

"Until now our knowledge of these characteristics was very limited," Arav said. "Before we were making educated inferences — but now we know. We know the distance of outflow from the center of source, we know the mass of outflow, and we know what causes its observed changes. The shadowing was definitely a surprise —a beautiful phenomenon we were lucky to catch."

Arav said luck played a part because the effect hadn't existed before last year.

Over the past two years the shadowing has built up and Arav believes it won't last much longer than another year or two, but concedes scientists don't have a full enough observation to say how the shadowing feature is changing in time.

Rosaire Bushey | Eurek Alert!
Further information:
http://www.vt.edu

Further reports about: Astronomers Hubble Space Telescope clouds observations phenomenon satellites shine structure winds

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>