Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A completely new atomic crystal dynamic of the white pigment titanium dioxide discovered

30.08.2013
An international team of researchers at Vienna University of Technology in Austria and at Princeton University in the USA has confirmed theoretically-predicted interactions between single oxygen molecules and crystalline titanium dioxide.

The results, which could be of importance for a variety of applications, have been published in the current issue of Science Magazine.


“A scanning tunneling microscope image of the surface of titanium dioxide with different forms of oxygen. The higher, white peaks are oxygen molecules that are sitting on the surface, the smaller double peak in the foreground is an oxygen molecule that is already embedded,“
Copyright: TU Vienna

Titanium dioxide is an inexpensive, yet versatile material. It is used as a pigment in wall paint, as a biocompatible coating in medical implants, as a catalyst in the chemical industry and as UV protection in sunscreen. When applied as a thin coating, it can keep all sorts of surfaces sparkling clean. The use of titanium oxide in the electronics industry is currently being investigated. Fundamental to all these properties could be the atomic properties discovered by Ulrike Diebold from the Institute of Applied Physics at TU Vienna and Annabella Selloni from the Frick Laboratory at Princeton and their teams.

Oxygen latches on

Diebold’s actual specialism is the physical and chemical properties of surfaces. “The surfaces of materials pose interesting fundamental questions, but are also important for applications”, explains the physicist. The surface of titanium dioxide, for example, interacts with oxygen from the air. How this happens at the atomic level has now been shown in Vienna. Martin Setvin from Diebold’s team took pictures of this surface with a scanning tunneling microscope. In this method, a fine metal tip is held extremely close to a surface, without actually touching it. A voltage is applied between the tip and the sample, which creates what is known as a tunneling current. This current is measured and displayed as an image.

Atomic vacancies pulled upwards
With this method impressive pictures are produced, in which single atoms can clearly be distinguished. By applying a high voltage between the tip and the titanium dioxide crystal, the researchers were able to pull vacancies in the atomic structure caused by single oxygen atoms that are missing to the surface and make images of them. Moreover, in a series of images, Diebold’s team was able to show how differently ionised oxygen molecules become embedded in the surface.
Fuel from CO2, titanium dioxide and light?
With their results, the experimental team in Vienna were able to confirm this atomic dynamic in titanium oxide crystal, which had been previously only been predicted theoretically. “Our results clearly show how important these oxygen vacancies are for the chemical properties of titanium oxide”, states Diebold about the new results from her research group. “We were also able to show that we can alter the charge state of the photocatalytically active oxygen atoms. Perhaps in future it will be possible to produce more active oxygen-rich photocatalysts. These could be used to convert CO2 into useful hydrocarbons, with the help of the titanium dioxide and light.”
Original publication
“Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101)“ by Martin Setvín, Ulrich Aschauer, Philipp Scheiber, Ye-Fei Li, Weiyi Hou, Michael Schmid, Annabella Selloni, Ulrike Diebold. Science, 30 August 2013: http://dx.doi.org/10.1126/science.1239879 (accessible as soon as the article has been officially published)
Until the embargo deadline, journalists can obtain a copy of the original article upon direct request to ‘AAAS Office of Public Programs‘ in the USA:
T +1-202-326-6440
scipak@aaas.org
Press photos
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/titandioxid
Contact
Prof. Ulrike Diebold
Institute for Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna
M +43-664-60588-3467
ulrike.diebold@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>