Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VAI researchers develop tool to help study prostate cancer

12.03.2010
New model allows researchers to find differences in survival mechanisms for normal cells and cancer cells that could aid in developing treatments

Van Andel Research Institute (VARI) researchers have developed a new method to better study the cells that line and protect the prostate in relation to the development of cancer. Using the model, they found that normal cells and cancer cells depend on different factors to survive, which could aid in discovering how to target cancer cells without affecting normal cells when developing treatments.

Prostate cancer is the most common form of cancer in men, with more than 192,000 new cases and more than 27,000 deaths reported in the United States in 2009 (Source: National Cancer Institute).

"This new model will serve as a valuable tool for understanding secretory prostate epithelial cells, which until now have not been available for extensive analysis," said VARI Scientific Investigator Cindy Miranti, Ph.D., whose lab published its study in a recent issue of the Journal of Cell Science.

Epithelial cells line and protect the internal and external organs and structures of the body. The prostate contains two types of epithelial cells, basal and secretory, and prostate cancers arise from abnormal cells as they are converted from basal into secretory cells in the body.

Prior to this study, scientists were able to culture basal cells, but not secretory cells. Using the model, researchers found that, unlike cancer cells, normal secretory cells are not dependent on the male sex hormone androgen for survival, but are dependent for survival on binding to each other via the protein E-cadherin.

"Prostate cancers are dependent on androgen for survival, so we were interested in whether normal secretory prostate epithelial cells also depend on androgen," said Dr. Miranti. "However, the cell culture models available didn't allow us to study secretory cells, so we generated them by reconstructing the natural conversion process from basal into secretory cells in a petri dish."

The differences in how cancer cells and normal cells control their survival can be exploited to develop therapies that preferentially target the tumor cells, but not the normal cells.

"This cell model will be extremely useful to investigators who are interested in studying the cell biology of prostate cancer as well as benign prostate hyperplasia," said Donald J. Tindall, Ph.D., Professor, Director & Vice Chair of Urologic Research at the Mayo Clinic College of Medicine. "Such studies should facilitate our understanding of the cellular mechanisms involved in progression of these diseases and may lead to new prognostic capabilities and therapeutic interventions."

This work was supported by a Prostate Cancer Research Program Training Award from the Department of Defense Congressionally Directed Medical Research Programs (CDMRP) of the U.S. Army Medical Research and Materiel Command. Approximately 72% of this project has been funded by federal funds in the amount of $97,801. The remaining 28% has been contributed by Van Andel Research Institute in the approximate amount of $38,367. The content of the information does not necessarily reflect the position or policy of the U.S. Government, and no official endorsement should be inferred.

The work of VARI's Laboratory of Integrin Signaling and Tumorigenesis is also supported by Research Scholar Grant no. RSG-05-245-01-CSM from the American Cancer Society.

About Van Andel Institute

Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories, in laboratories in Singapore and Nanjing, and in collaborative partnerships that span the globe.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>