Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using nanoparticles to combat arteriosclerosis

07.01.2016

In industrialized countries, a particularly high number of people suffer from arteriosclerosis – with fatal consequences: Deposits in the arteries lead to strokes and heart attacks. A team of researchers under the leadership of the University of Bonn has now developed a method for guiding replacement cells to diseased vascular segments using nanoparticles. The scientists demonstrated in mice that the fresh cells actually exert their curative effect in these segments. However, much research remains to be done prior to use in humans. The results are now being published in the renowned journal "ACS NANO."

In arterial calcification (arteriosclerosis), pathological deposits form in the arteries and this leads to vascular stenosis. Strokes and heart attacks are a frequent outcome due to the resultant insufficient blood flow.


Fluorescence-labeled cells with nanoparticles

Photo: Dr. Sarah Rieck/Dr. Sarah Vosen/University of Bonn


Juniorprofessor Dr. Daniela Wenzel (left) and Dr. Sarah Rieck.

Photo: Katharina Wislsperger/Ukom UKB

Endothelial cells which line the blood vessels play an important role here. "They produce nitric oxide and also regulate the expansion of the vessels and the blood pressure," explains junior professor Dr. med. Daniela Wenzel from the Institute of Physiology I of the University of Bonn. Damage to the endothelial cells is generally the insidious onset of arteriosclerosis.

A team of researchers working with Jun.-Prof. Wenzel, together with the Technische Universität München, the Institute of Pharmacology and Toxicology at the University of Bonn Hospital and the Physikalisch-Technische Bundesanstalt Berlin, developed a method with which damaged endothelial cells can regenerate and which they successfully tested in mice.

The scientists transferred the gene for the enzyme eNOS into cultured cells with the aid of viruses. This enzyme stimulates nitic oxide production in the endothelium like a turboloader. "The enzyme is an essential precondition for the full restoration of the original function of the endothelial cells," reports Dr. Sarah Vosen from Jun.-Prof. Wenzel's team.

A magnet delivers the nanoparticles to the desired site

Together with the gene, the scientists also introduced tiny nanoparticles, measuring a few hundred nanometers (one-millionth of a millimeter), with an iron core. "The iron changes the properties of the endothelial cells: They become magnetic," explains Dr. Sarah Rieck from the Institute of Physiology I of the University of Bonn.

The nanoparticles ensure that the endothelial cells equipped with the "turbo" gene can be delivered to the desired site in the blood vessel using a magnet where they exert their curative effect. Researchers at the Technische Universität München have developed a special ring-shaped magnet configuration for this which ensures that the replacement cells equipped with nanoparticles line the blood vessel evenly.

The researchers tested this combination method in mice whose carotid artery endothelial cells were injured. They injected the replacement cells into the artery and were able to position them at the correct site using the magnet.

"After half an hour, the endothelial cells adhered so securely to the vascular wall that they could no longer be flushed away by the bloodstream," says Jun.-Prof. Wenzel. The scientists then removed the magnets and tested whether the fresh cells had fully regained their function. As desired, the new endothelial cells produced nitric oxide and thus expanded the vessel, as is usual in the case of healthy arteries. "The mouse woke up from the anesthesia and ate and drank normally," reported the physiologist.

Transfer to humans requires additional research

Normally, doctors surgically remove vascular deposits from the carotid artery and in some cases place a vascular support (stent) to correct the bottleneck in the crucial blood supply. "However, these areas frequently become blocked with deposits once again," reports Jun.-Prof. Wenzel.

"In contrast, we are getting to the root of the problem and are restoring the original condition of healthy endothelial cells." The researchers hope that what works in mice is also possible in humans, in principle. However, there are still many challenges to overcome. Jun.-Prof. Wenzel: "There is still a considerable need for research."

The study was supported by funding to the junior research group “Magnetic nanoparticles (MNPs) - endothelial cell replacement in injured vessels” by the State of North Rhine-Westphalia and to the DFG Research Unit FOR 917 “Nanoguide”.

Publication: Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets, journal "ACS NANO", DOI: 10.1021/acsnano.5b04996

Detailed image caption: On the left are fluorescence-labeled cells with nanoparticles: The cellular nuclei are shown in blue, the fluorescence labeling is shown in green and the nanoparticles in the cells are identified by arrows. The middle photo shows a blood vessel populated with these cells (green). On the right is a detailed image of a vascular wall with the eNOS protein identified (red). © Photo: Dr. Sarah Rieck/Dr. Sarah Vosen/University of Bonn

Media contact information:

Junior professor Dr. med. Daniela Wenzel
Institute of Physiology I
University of Bonn
Tel. 0228/6885216
E-Mail: dwenzel@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>