Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves heart rhythm treatment

19.07.2012
CONFIRM study results point to a doubling of success in treating heart rhythm disorder

Researchers from UC San Diego, the University of California Los Angeles and Indiana University report having found, for the first time, that atrial fibrillation or irregular heart rhythms is caused by small electrical sources within the heart, in the form of electrical spinning tops ("rotors") or focal beats. Importantly, they found a way of detecting these key sources, then precisely targeting them for therapy that can shut them down in minutes with long lasting results.

The team, which included cardiologists, physicists and bioengineers, report the findings in the July issue of the Journal of the American College of Cardiology as the CONFIRM trial (Conventional Ablation for Atrial Fibrillation
With or Without Focal Impulse and Rotor Modulation).

Currently, many patients treated for atrial fibrillation with standard therapies will experience a recurrence due to the difficulty of finding the source of the arrhythmia. The new findings will help cardiologists better target and treat arrhythmias.

The CONFIRM study examined 107 patients with atrial fibrillation referred for a non-surgical catheter ablation procedure. During this procedure, doctors thread a wire with a metal-tipped catheter inside the body, from a vein in the groin, to apply heat to the area of the heart that is producing the arrhythmia to stop it.

In one group of patients, the team used the new technique to help perform precise burns, called Focal Impulse and Rotor Modulation (FIRM) that were aimed directly at the fundamental source of the arrhythmia – tiny electrical disturbances in the heart called rotors or focal sources that look like mini tornadoes or spinning tops.

Remarkably, this new procedure shut down atrial fibrillation or very significantly slowed it in 86 percent of patients in an average of only 2.5 minutes.

In comparison, conventional catheter procedures were performed in a second group of patients. Since this approach is less targeted, it involved hours of treatment over larger regions in the heart and often did not shut down the atrial fibrillation.

To track outcomes, patients received an implanted ECG monitor that very accurately assessed their heart rhythms over time. Researchers found that after two years, the FIRM-guided group had an 82.4 percent freedom from atrial fibrillation episodes, compared to only 44.9 percent freedom in the group that received standard therapy.

The new targeted method demonstrated an 86 percent improvement over the conventional method in the study.

"We are very excited by this trial, which for the first time shows that atrial fibrillation is maintained by small electrical hotspots, where brief FIRM guided ablation can shut down the arrhythmia and bring the heart back to a normal rhythm after only minutes of ablation," said lead author Sanjiv Narayan, MD, PhD, professor of medicine at UC San Diego Sulpizio Cardiovascular Center, director of Electrophysiology at the San Diego Veterans Affairs Medical Center and visiting professor at the UCLA Cardiac Arrhythmia Center.

"The results of this trial, with an 80 percent ablation success rate after a single procedure, are very gratifying. This is the dawn of a new phase of managing this common arrhythmia that is mechanism-based," said Kalyanam Shivkumar, MD, PhD, director of the UCLA Cardiac Arrhythmia Center, and professor of medicine and radiological sciences at UCLA.

This study also represents a successful example of technology transfer from U.S. researchers supported by U.S. research funding to a small U.S. enterprise. The science behind this work was funded by grants to Narayan from the National Institutes of Health, including a grant awarded as part of the American Recovery and Reinvestment Act, and by the Doris Duke Charitable Foundation.

These discoveries, owned by the Regents of the University of California, were then licensed to a local startup company, Topera Medical, which has recently obtained FDA clearance for the mapping system it developed (RhythmViewTM) from this early science. Narayan is a co-founder with equity interest in Topera. Wouter-Jan Rappel, PhD, holds equity interest in Topera. John Miller, MD, has received modest honoraria from Topera. Shivkumar is an unpaid advisor to Topera, and the other authors report no relationship with Topera.

Other authors included John Miller, MD, chief of electrophysiology at Indiana University; David Krummen, MD, associate professor of medicine with UC San Diego Sulpizio Cardiovascular Center and associate director of electrophysiology at the San Diego Veterans Affairs Medical Center; Wouter-Jan Rappel, PhD, University of California San Diego Department of Theoretical Biological Physics; and Paul Clopton from the San Diego Veterans Affairs Medical Center Department of Statistics.

Kim Edwards | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>