Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tachycardia: Genetic Cause Discovered

31.07.2013
Ventricular fibrillation, loss of consciousness and death in seemingly healthy people: These are the characteristics of the so-called Brugada syndrome. In the search for the causes of this disease, an international team of scientists has now discovered a surprising fact.

A gene known to be essential in the formation of the interventricular septum and of the cardiac valves can be responsible for the development of the Brugada syndrome.

This is the main result of a study recently published in the journal Nature Genetics by the research group of Amsterdam cardiologist Connie R. Bezzina. The study also involved scientists at the Biocenter of the University of Würzburg: Professor Manfred Gessler, head of the Department for Developmental Biochemistry, and his team have been studying the respective gene, the Hey2 gene, for a long time.

Gessler and his associates identified the Hey2 gene more than ten years ago. In their studies, they were also able to show in an animal model that the gene plays a significant role in the formation of the interventricular septum and of the cardiac valves. "However, the fact that the gene is involved in the electrical activity of the cardiac muscle and conduction cells has not been shown before," says Gessler.

The Brugada syndrome

The Brugada syndrome has been recognized for only just about 20 years as a distinct genetic arrhythmia of the heart. It was first described in 1991 by two brothers, Josep and Pedro Brugada. Patients suffering from this disease are affected by an abnormal electrical conduction in the heart associated with a high risk of sudden cardiac death. They are subject to recurrent cardiac arrhythmias, which can lead to loss of consciousness. In the worst case, ventricular fibrillation occurs when the ventricles of the heart contract so rapidly that they cease to pump the blood effectively, which results in cardiovascular failure.

"Previously, it was known that about 20 percent of the patients have defects in the sodium ion channel of the cardiac cells, predominantly in the subunit encoded by the SNC5A gene. However, the causes of the disease remained unclear in the majority of cases," says Manfred Gessler.

The study

In the search for further risk factors, the study group of Connie R. Bezzina first conducted genome-wide association studies, involving more than 1000 patients. As expected, they found that the disease is correlated with certain genetic variants of the SCN5A gene and of the related SCN10A gene, which both have a function in cardiac excitation propagation. The scientists confirmed this finding in further patient cohorts.

To the researchers’ surprise, however, the first analysis also revealed statistically significant data indicating that genetic variations near the HEY2 gene play a role in the development of the Brugada syndrome. These results were confirmed in additional patient cohorts as well.

Defects in the Hey2 gene identified

In a joint project with the Amsterdam study group, the Würzburg researchers then achieved a major breakthrough: "With the help of special optical methods, we were able to establish that mice lacking one of the two copies of the Hey2 gene also exhibit detectable changes to the ventricular excitation propagation and the subsequent repolarization of the cardiac muscle cells comparable to those of the Brugada syndrome," Gessler explains. Hence, the HEY2 gene, previously only linked to developmental defects of the heart, also seems to have an impact on the correct formation of the cardiac conduction system and the electrical excitability of the cardiac muscle cells.

Further studies are already in progress in order to shed more light on the molecular mechanisms of this defect.

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death; Connie R Bezzina et al. Nature Genetics, published online 21 July 2013; doi:10.1038/ng.2712

Contact person

Prof. Dr. Manfred Gessler, T: +49 (0)931 31-84159,
email: gessler@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>