Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists examine how a gut infection may produce chronic symptoms

13.01.2020

Sometimes the end of an intestinal infection is just the beginning of more misery. Of those who contract traveler's diarrhea, for example, an unlucky few go on to develop irritable bowel syndrome (IBS), a chronic inflammation of the intestinal tract.

Scientists aren't sure exactly how this happens, but some think an infection may contribute to IBS by damaging the gut nervous system. A new Rockefeller study takes a close look at why neurons in the gut die and how the immune system normally protects them.


Along the edge of the small intestine, neurons (green) appear in close proximity to the inflammatory molecule Nlrp6 (pink).

Credit: Laboratory of Mucosal Immunology

Usage Restrictions: This image may only be used to illustrate research described in the accompanying release.

Conducted with mice, the experiments described recently in Cell offer insight on IBS and could point toward potential new treatment approaches.

Keeping inflammation in check

In a healthy gut, the immune system must strike a careful balance between responding to threats and keeping that response in check to avoid damage.

"Inflammation helps the gut ward off an infection, but too much of it can cause lasting harm," says Daniel Mucida, an associate professor and head of the Laboratory of Mucosal Immunology. "Our work explores the complex mechanisms that prevent inflammatory responses from destroying neurons."

To understand the effects of an infection on the nervous system, Mucida and his colleagues gave mice a weakened form of Salmonella, a bacterium that causes food poisoning, and analyzed neurons within the intestine.

They found that infection induced a long-lasting reduction of neurons, an effect they attributed to the fact these cells express two genes, Nlrp6 and Caspase 11, which can contribute to a specific type of inflammatory response.

This response, in turn, can ultimately prompt the cells to undergo a form of programmed cell death. When the researchers manipulated mice to eliminate these genes specifically in neurons, they saw a decrease in the number of neurons expiring.

"This mechanism of cell death has been documented in other types of cells, but never before in neurons," says Fanny Matheis, a graduate student in the lab. "We believe these gut neurons may be the only ones to die this way."

Macrophages to the rescue

It's not yet clear exactly how inflammation causes neurons to commit cell suicide, yet the scientists already have clues suggesting it might be possible to interfere with the process. The key may be a specialized set of gut immune cells, known as muscularis macrophages.

Previous work in Mucida's lab has shown that these cells express inflammation-fighting genes and collaborate with the neurons to keep food moving through the digestive tract.

If these neurons die off, as happens in an infection, a possible result is constipation--one of a number of unpleasant IBS symptoms. In their recent report, the team demonstrate how macrophages come to the neurons' aid during an infection, ameliorating this aspect of the disorder.

Their experiments revealed that macrophages possess a certain type of receptor molecule that receives stress signals released by another set of neurons in response to an infection. Once activated, this receptor prompts the macrophage to produce molecules called polyamines, which the scientists think might interfere with the cell death process.

Getting back to normal

In other experiments, the researchers found that Salmonella infection alters the community of microbes within the guts of mice--and when they restored the animals' intestinal flora back to normal, the neurons recovered.

"Using what we learned about the macrophages, one could think about ways to disrupt the inflammatory process that kills the neurons," says Paul Muller, a postdoctoral fellow in the lab.

For instance, it might be possible to develop better treatments for IBS that work by boosting polyamine production, perhaps through diet, or by restoring gut microbial communities.

Since short-term stress responses also appear to have a protective effect, Muller thinks it may also be helpful to target that system.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!
Further information:
https://www.rockefeller.edu/news/27161-scientists-examine-gut-infection-may-produce-chronic-symptoms/
http://dx.doi.org/10.1016/j.cell.2019.12.002

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

Scientists in Mainz develop a more sustainable photochemistry

14.01.2020 | Life Sciences

Laserphysics: At the pulse of a light wave

13.01.2020 | Physics and Astronomy

New function for potential tumor suppressor in brain development

13.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>