Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A vaccine approach to treating Parkinson’s disease

16.06.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine working with scientists at Elan Pharmaceuticals, have reported promising results in mice of a vaccine approach to treating Parkinson’s and similar diseases. These results appear in the June edition of the journal Neuron.



Eliezer Masliah, M.D., Professor of Neurosciences and Pathology at UCSD, and colleagues at UCSD and Elan Pharmaceuticals in San Francisco, vaccinated mice using a a combination of the protein that abnormally accumulates in the brains of Parkinson’s (called human alpha-synuclein) and an adjuvant. This approach resulted in the generation of anti-alpha synuclein antibodies in mice that are specially bred by Masliah’s team to simulate Parkinson’s disease, resulting in reduced build-up of abnormal alpha-synuclein. The accumulation of abnormal alpha-synuclein is associated with degeneration of nerve cells and interference with normal inter-cellular communication, leading to Parkinson’s disease and dementia.

The work marks the first time a vaccine for this family of diseases has been found effective in animal studies. Scientists at Elan Pharmaceuticals have been working for the past few years in a vaccine for Alzheimer’s Disease.


The researchers focused on a spectrum of neurological disorders called Lewy body disease, which include Parkinson’s and Alzheimer’s. These disorders are marked by the presence of Lewy bodies -- abnormal clumps of alpha-synuclein -- in the brain. Normally, alpha-synuclein proteins support communications between brain cells, or neurons. However, when abnormal proteins clump together in the neurons, a build-up of synuclein can cut off neuron activity, blocking normal signaling between brain cells and ultimately choking the cells to death.

"We found that the antibodies produced by the vaccinated mice recognized and reduced only the abnormal form of alpha-synuclein, since the protein’s normal form is in a cellular compartment where antibodies can’t reach it," said Masliah. "Abnormal alpha-synuclein finds its way to the cell membrane, where antibodies can recognize it."

Masliah stressed that the team’s experimental active immunization, while effective in mice, may not be as useful in humans. "We would not want to actively immunize humans in this way by triggering antibody development, because one could create harmful inflammation," he cautioned. "However, it might be feasible to inject antibodies directly, as if the patient were creating his or her own."

The team, the first to identify the presence of these proteins in the human brain, originally thought the protein played an important role in the development of Alzheimer’s disease. Then, an explosion of research linked Lewy bodies and their constituent proteins to both Alzheimer’s and Parkinson’s. The team spent four years clarifying alpha-synuclein’s role in Parkinson’s, developing a mouse model that contained the faulty and normal genes for alpha-synuclein, and conducting the experiments that led to their current findings.

With evidence that this approach could be effective in treating Lewy Body disease, the UCSD researchers are now working with Elan Pharmaceuticals to develop alternative ways to produce alpha-synuclein antibodies, with the goal of making a vaccine that is safe and effective in humans. While this research could take many years and holds no promise of prevention or cure, the researchers are hopeful that the mouse studies are a step in the right direction.

"This shows the first demonstration of a vaccine for this family of disease," Masliah said.

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>