Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop blood test that can detect genetic changes in progressive breast cancer

08.06.2004


Researchers at UT Southwestern Medical Center at Dallas have developed a blood test that can detect amplification of a certain gene found in circulating cells associated with breast cancer.



If further clinical studies bear out its effectiveness, researchers say the blood test could be used as a standard operating procedure to monitor genetic changes for which a treatment is available.

"Cancer is a moving target, and the oncologist has to know which bullet to put in his gun," said Dr. Jonathan Uhr, professor of microbiology and internal medicine in the Cancer Immunobiology Center at UT Southwestern and senior author of the study. "Obtaining repeated blood samples is a safe and routine procedure, and this test can help the oncologist determine whether a new genetic change has become dominant and calls for a specific treatment for that change."


Their work will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The researchers developed a blood test to optimize the detection and characterization of circulating cancer cells shed from a primary tumor. This is done by matching the cells’ genetic abnormalities with the parent tumor.

The test can detect one circulating tumor cell in 10 million white blood cells, said Dr. Uhr.

The research augments previous work by UT Southwestern researchers to determine if patients whose primary tumor did not have amplification of the gene HER-2 could acquire amplification if the tumor recurred and progressed. Using the new blood test to examine the circulating tumor cells from growing tumors, initial indications are this amplification eventually can occur, Dr. Uhr said.

Dr. Uhr says that in a patient whose primary tumor is classified as HER-2 gene non-amplified, a minute number of tumor cells actually may be HER-2 amplified. With time and selective pressures, this small population expands and becomes the predominant one.

Overexpression of the HER-2 gene occurs in about 20 percent to 25 percent of breast-cancer patients. Prognosis is poor, as the cancer cells often resist radiation therapy and almost all drugs.

However, studies have shown that the drug Herceptin (an antibody to HER-2) can treat tumors with HER-2 amplification by itself in 25 percent of patients and in 50 percent when combined with chemotherapy. The antibody binds to the molecules that are produced by the HER-2 gene and reside on the cancer cells’ surface. The drug neutralizes their effect with far fewer side effects than conventional chemotherapy.

By utilizing this blood test to determine HER-2 gene amplification in circulating cancer cells, doctors may be able to provide Herceptin to certain patients who have acquired such amplification. At present, HER-2 amplification is only diagnosed in the primary tumor.

"The implications of tumor evolution over the course of treatment are significant," said Dr. Debasish Tripathy, professor of internal medicine and contributing author. "A better understanding of this process will not only allow us to use available drugs in a more individualized fashion but also may point to new therapeutic approaches." Dr. Tripathy heads the Komen/UT Southwestern Breast Cancer Research Program.

The next step is to evaluate patients whose circulating tumor cells have acquired HER-2 gene amplification to determine if these cells are reflecting the genetic status of the recurrent tumor, said Dr. Uhr. For the blood test to be considered worthwhile, research also must show that therapy with Herceptin alone or in addition to a chemotherapeutic agent can cause remissions in a significant number of patients.


Other UT Southwestern contributors to the PNAS study were Dr. Raheela Ashfaq, professor of pathology; Dr. Eugene Frenkel, professor of internal medicine; Dr. Marilyn Leitch, professor of surgical oncology; Dr. David Euhus, associate professor of surgical oncology; Dr. Barbara Haley, associate professor of internal medicine; Dr. Cynthia Osborne, assistant professor of internal medicine; Dr. Susan Hoover, assistant professor of surgical oncology; Dr. Edward Clifford, clinical assistant professor of surgery; and in the Cancer Immunobiology Center, Dr. Ellen Vitetta, director; Dr. Songdong Meng, postdoctoral researcher; Dr. Jianqiang Wang, postdoctoral researcher; Thomas Tucker, senior research scientist; and Nancy Lane, research scientist.

Researchers from UT M.D. Anderson Cancer Center; Texas Oncology PA; Dallas Surgical Group; Cancer Center Associates in Dallas; Vysis, Inc.; Wistar Institute; Immunicon Corp.; the Washington University School of Medicine in St. Louis; and Germany’s University of Tubingen also contributed.

Research was supported by the Raymond D. Nasher Cancer Research Program and the Komen/UT Southwestern Breast Cancer Research Program.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Scott Maier | EurekAlert!
Further information:
http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>