Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ebola virus-like particles prevent lethal Ebola virus infection

10.12.2003


Scientists have successfully immunized mice against Ebola virus using hollow virus-like particles, or VLPs, which are non-infectious but capable of provoking a robust immune response. These Ebola VLPs conferred complete protection to mice exposed to lethal doses of the virus.



The work could serve as a basis for development of vaccines and other countermeasures to Ebola, which causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol, is of concern both as a global health threat and a potential agent of biological warfare or terrorism. Currently there are no available vaccines or therapies.

In a study published in this week’s online edition of Proceedings of the National Academy of Sciences, Sina Bavari and colleagues at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) describe creating VLPs from two Ebola virus proteins, glycoprotein (GP) and matrix protein (VP40). These VLPs resemble a shell of infectious viral particles but lack the genetic material necessary for reproduction.


When the VLPs were injected into mice, they activated both arms of the immune response. Specifically, they induced cell-mediated immunity via T cells and humoral immunity via B cells. Both are necessary for complete protection against the Ebola virus.

Having shown that the VLPs evoked a robust immune response, the team next examined whether this response could protect mice from lethal challenge with Ebola virus. Mice were vaccinated with VLPs three times at three-week intervals and challenged with the virus six weeks after the last vaccination. The result was 100 percent protection with no signs of illness in the immunized mice.

"This is astonishing work," said Colonel Erik A. Henchal, commander of USAMRIID. "The ability to produce self-assembling particles that resemble whole virus will give us a new tool to evaluate the combination of variables required to produce a protective immune response to Ebola virus."

According to Bavari, VLPs have already been tested and found efficacious as vaccines for several other viruses, including papillomavirus, HIV, parvovirus, and rotavirus. His team hopes to build upon its work by evaluating the efficacy of VLPs for both Ebola and Marburg, a related virus, in nonhuman primates.

"The beauty of this approach is that VLPs are not a traditional vaccine platform, so you don’t have to worry about the recipient building up an immunity to that platform," Bavari explained. "It looks like a virus, so you have the protective immune response, but it’s basically an empty shell."

VLPS also have potential application beyond vaccine development--for example, they could be used to develop diagnostic reagents for identifying Ebola-infected samples. In addition, generating VLPs containing additional structural proteins will be useful in determining the mechanisms of the immune responses to Ebola virus infection.

Study collaborators were Kelly L. Warfield, Catharine M. Bosio, Brent C. Welcher, Emily M. Deal, Alan Schmaljohn, and M. Javad Aman, all of USAMRIID, and Mansour Mohamadzadeh of the Department of Medicine at Tulane University.


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>