Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic CPR device dramatically improves cardiac arrest survival in Stanford animal study

11.11.2003


A small, portable device greatly increases the chance of surviving sudden cardiac death by restoring blood pressure better than conventional cardiopulmonary resuscitation, according to a Stanford University School of Medicine animal study. Following restoration of heart function, most of the animals in the Stanford study also showed no neurological damage, which commonly results from even a momentary blood flow interruption to the brain.



To model what happens during abrupt loss of heart function, the researchers tested the device, marketed as the AutoPulse Resuscitation System by Revivant Corp., on pigs. They found that AutoPulse contributed to the survival of three-quarters of the animals, while none of the animals initially treated with conventional CPR survived. "What was even more astounding than the survival rate was that 88 percent of the surviving animals had normal brain function," said Mehrdad Rezaee, MD, PhD, clinical science research associate in the Department of Cardiovascular Medicine and director of interventional preclinical research at Stanford. Results of the study are to be presented Nov. 10 at the American Heart Association’s 76th annual Scientific Sessions in Orlando.

Although the AutoPulse is already commercially available in the United States, researchers wanted to investigate its overall effectiveness in reviving heart attack victims and also study its lasting benefit. Survival of a heart attack depends on maintaining blood flow to wash out the metabolic waste and move oxygenated blood to organs throughout the body. CPR is designed to artificially keep the blood flowing when the heart can no longer pump; the degree to which it is successful depends on how effectively CPR can squeeze, or compress, the chest wall surrounding the heart.


Researchers induced ventricular fibrillation, an electrical abnormality in the heart that precedes cardiac arrest, in 32 pigs. The animals were left without a pulse for eight minutes to simulate the average paramedic response time, after which they were treated with both the AutoPulse and standard manual CPR. One group received the AutoPulse first and the other received manual CPR first. The researchers found that the device restored blood pressure better than manual compressions and returned the hearts to pre-arrest condition in 73 percent of the animals treated with the device first. None of the animals first treated with conventional CPR survived.

The study confirmed that the device can help restore blood flow and pressure by mechanically producing chest compressions, researchers said. Unlike conventional CPR, the device can deliver 80 compressions per minute for up to an hour over a broader expanse of the chest than the concentrated area of a human hand.

"The impact is going to be much more than defibrillators found in airports and on planes," said Rezaee, senior author of the study. He explained that no expertise is needed to use this CPR device; its microprocessors automatically estimate the size of the person and calculate the force necessary to compress the chest wall by 20 percent, the optimal amount of pressure to keep blood flowing.

About 460,000 people each year suffer sudden cardiac arrest, 95 percent of whom die, Rezaee said. Blood flow must be restored as soon as possible - within minutes - to avoid lasting health consequences or death. In a typical emergency situation outside of a medical facility, it takes an average of eight minutes or longer for paramedics to arrive. Manual CPR does not provide enough depth of chest compression to adequately restore blood flow (only about 10 percent of normal) to reverse the damaging effects of heart stoppage. "Wherever a health-care professional would do manual CPR, a device like this could be better for the patient," said Rezaee.

Other Stanford researchers who contributed to the study include Fumiaki Ikeno, Hideaki Kaneda and Yoichiro Hongo, graduate students in the School of Medicine; Jennifer Lyons, life sciences research assistant in cardiovascular medicine; and Cristine Nolasco and Sascha Emami, life science technicians in cardiovascular medicine. The work was supported by Revivant Corp. None of the authors has a financial interest in Revivant.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>