Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find genetic link to prostate cancer

15.10.2003


Some men may be more prone to prostate cancer because a variation in a specific gene makes them more susceptible to the harmful effects of cancer-causing agents, a new study shows. The results of the study led by Wake Forest University School of Medicine researcher Jianfeng Xu, Ph.D. will be published today in the British Journal of Cancer.



Xu and his team, in collaboration with researchers at Johns Hopkins University, looked at variations in a gene that controls the body’s response to carcinogens in the environment as well as hormones natural to the body. They found men with prostate cancer often had a different version of the gene than men who were not affected by the disease.

Scientists believe their findings may hold important clues in understanding what environmental factors may trigger the development of prostate cancer.


"Previous research suggests prostate cancer arises in certain individuals due to a combination of genetic and environmental factors," said Xu. "Our study suggests that the genetic make-up of some men leaves them more susceptible to potential carcinogens in the environment or hormones in the body that could trigger the disease."

The researchers analyzed a gene called CYPIBI, which is thought to play an important role in the development of cancer.

CYPIBI normally plays a dual role in the body and therefore has been suggested to both cause and prevent cancer. It helps the body eliminate environmental chemicals that can cause cancer but also can activate some hormones, turning them into cancer-causing agents.

Tiny variations in the gene may alter its function, say the researchers, with some increasing the cancer-causing effects of the gene and others enhancing its ability to prevent cancer.

The team looked separately at 13 variations in CYPIBI and clusters of these variations, called polymorphisms, commonly found in Caucasian male populations. They found that one cluster of variations was more common in men with prostate cancer who had no family history of the disease, while another combination appeared more frequently in men who did not have the disease.

The study suggests men with a particular gene variant have an increased risk of prostate cancer. "It’s an exciting finding because we know the gene interacts with certain cancer-causing chemicals," said Xu. "Studying this more closely will bring us closer to finding out what factors in the environment or within the body may trigger the disease."

This information will help scientists better understand how changes in the gene alter its dual functions in the body, and allow them to identify people at high risk and advise them on ways to prevent the disease.


Media Contacts: Jonnie Rohrer, 336-716-6972, Karen Richardson or Robert Conn, 336-716-4587.

Jonnie Rohrer | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>