Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for skin cancer confirmed

14.07.2003


A University of Minnesota study has confirmed the pivotal role of an enzyme known as JNK2 in the development of nonmelanoma skin cancers. The findings suggest that JNK2 should be evaluated as a target for the prevention and treatment of such cancers. Lead author Zigang Dong, director of the university’s Hormel Institute in Austin, Minn., will present the work at 8:30 a.m. Sunday, July 13, at the American Association for Cancer Research meeting in the Washington Convention Center, 801 Mount Vernon Place NW, Washington, D.C.

Ultraviolet rays from the sun are the major culprit in skin cancer, which accounts for more than half the cancers in the United States. The process of cancer development involves a chain of interactions among biochemicals in the skin, and biochemicals that play key roles in carcinogenesis make potential therapeutic targets. Many human cancers show elevated activity in some form of JNK enzyme, and the enzyme is also activated by sunlight, Dong said.

"Even if one goes into the sun for a few minutes, the activity of JNK in the epidermis rises," said Dong. "If you go out for a few minutes, JNK activity doesn’t stay elevated. But it looks as though if a person gets too much sun exposure, JNK activity becomes permanently elevated and cancers develop. This study indicates that some form of JNK activity is a key step in the process by which nonmelanoma cancers grow."



Working with mice, Dong and his colleagues focused on two enzymes known to be activated by factors that cause cells to divide and that have been considered important in skin cells’ response to UV light. Of the two enzymes, called JNK1 and JNK2, only the latter turned out to play an important role in the development of tumors.

The researchers used two lines of mice that had been rendered enzyme-deficient by inactivation of the gene for either JNK1 or JNK2 in fertilized mouse eggs. When the mice were two months old, the scientists applied a chemical carcinogen to the skin of their backs, followed by five-times-a-week exposure to UVB light, the ultraviolet light that causes skin cancer. At 31 weeks of age, a much smaller percentage of JNK2-deficient mice had tumors (18 percent), compared to control mice (48 percent) or JNK1-lacking mice (50 percent). At 40 weeks of age, the percentage of tumor-bearing JNK2-deficient mice had almost doubled, to 35 percent, while the percentage rose more slowly in control mice (to 56 percent) and JNK1-deficient mice (to 73 percent).

The data suggest that when JNK2 is lacking, skin cells are inhibited, or at least delayed, in their response to UVB light.

"Knocking out the JNK2 enzyme could simply delay the response to ultraviolet light, but if so, it would be significant," Dong said. "If we age enough, every one of us will get cancer. But if we can delay the process, that’s good progress."

The researchers also studied the biochemistry of skin and embryonic cells from the mice. They found that UVB light and a chemical known to promote tumor formation induced biochemical activity associated with cell division and tumor growth in control mice and JNK1-deficient mice, but not in JNK2-deficient mice.


The work was supported by the National Institutes of Health.


Contacts:

Zigang Dong, Hormel Institute director, (507) 437-9600

Deane Morrison, University News Service, (612) 624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>